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Rust claims to advance industrial programming by bridging the gap between low-level systems programming
and high-level application programming, enabling programmers to build more reliable and efficient software.
At the heart of this achievement is the borrow checker — a novel approach to ownership that aims to balance
type system expressivity with usability. And yet, to date there is no type system that fully captures Rust’s
notion of ownership and borrowing, and hence no proper foundation for research on Rust.

We capture the essence of this model of ownership by developing a type systems account of Rust’s borrow
checker. We present Oxide, a formalized programming language close to source-level Rust (but with fully-
annotated types). Oxide takes a new view of lifetimes as sets of locations called regions which approximate the
origins of references. Our type system is able to automatically compute this information through a control-
flow-based substructural typing judgment. In doing so, we develop a novel type system for region-based alias
management. Significantly, Oxide is the first type system for core Rust that provides a tested semantics and
leverages conventional tools for the formalization and metatheory: it is not built on top of a separation logic
and is proved sound using progress and preservation. As such, it offers a self-contained model of borrow
checking — including features such as non-lexical lifetimes — that provides a basis for future research on Rust.

1 INTRODUCTION
The Rust programming language exists at the intersection of low-level “systems” programming
and high-level “applications” programming, providing both fine-grained control over memory and
performance and high-level abstractions that make software more reliable and quicker to produce.
To accomplish this, Rust integrates decades of programming languages research into a production
system. Most notably, this includes ideas from linear and ownership types [Clarke et al. 1998; Girard
1987; Lafont 1988; Noble et al. 1998] and region-based memory management [Fluet et al. 2006;
Grossman et al. 2002]. Yet, Rust goes beyond prior art in developing a particular typing discipline
that aims to balance both expressivity and usability. As such, Rust has something interesting to
teach us about making ownership practical for programming.

But without a formal semantics to build upon, it is difficult for researchers to learn, understand,
and investigate this new discipline. This is not a new problem; the novelty of new languages has
often encouraged their formal study to learn precisely what they offer. As Guha et al. [2010] did for
JavaScript, we endeavor to do for Rust — capturing the essential pieces of Rust, namely the borrow
checker, and providing a foundation for research with our new formally-defined language, Oxide.

While there are existing formalizations of Rust [Benitez 2016; Jung et al. 2019, 2018a; Pearce 2021;
Reed 2015], none properly convey the essence of Rust’s type system. We will discuss all of them in
more detail in §4, but for now, we will focus on RustBelt [Jung et al. 2018a] which represents the
most significant effort to date, and the strongest point of comparison to Oxide. RustBelt defines a
calculus called 𝜆Rust and takes a semantic approach to type soundness [Ahmed 2004; Ahmed et al.
2010; Milner 1978] to verify that major parts of Rust’s standard library APIs (written using unsafe
code) do not violate its safety guarantees. Yet, 𝜆Rust’s continuation-passing style and low-level
nature — closer to Rust’s Mid-level Intermediate Representation (MIR) — make it difficult to use for
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source-level reasoning. Further, the 𝜆Rust semantics rely on a lifetime logic embedded in Iris [Jung
et al. 2018b]. While this logic and embedding is useful for verifying the implementation of standard
library APIs, the need to understand the lifetime logic and Iris poses a considerable cost to other
researchers interested in, for instance, investigating new type features for Rust. Follow-on work
by Jung et al. [2019] provides an operational model called Stacked Borrows for the comparatively
untyped “raw pointers” (usable only in unsafe), which is largely orthogonal to our efforts as we
focus predominantly on the static semantics of Rust.

1.1 Why do another formalism of Rust then?
RustBelt and other prior work formalize a semantics for Rust based on the notion of lifetimes as
the centerpiece of their borrow checking analysis in some way, and indeed, in context, this was a
perfectly sensible decision. After all, Rust’s initial versions of borrow checking relied on lifetimes
tied to lexical scope (i.e., to a first approximation, an object in memory was considered to live
until the end of its lexical scope). However, the work that extended the language to non-lexical

lifetimes fundamentally complicated reasoning about references tied to lifetimes in this way. Using
continuation-passing style [Sussman and Steele 1975] as 𝜆Rust does addresses some of the added
complexity of non-lexical lifetimes by providing a natural way for non-lexical lifetimes to be made
contiguous. However, we believe it is necessary to model how the source program works and how
to think about borrow checking with non-lexical lifetimes in that light. To that end, we employ a
novel use of regions to track aliasing in the static semantics of the program in Oxide.

As we will see, Oxide is a higher-level language, with syntax close to that of surface Rust and a
semantics that works with an abstract notion of memory that does not require us to make concrete
memory layout decisions for each type. This is significant because it allows us to focus on the
essence of how safe Rust deals with memory and aliasing, while avoiding a need to address details
caught up in discussions about memory layout and validity guarantees that are ongoing in the
unsafe code guidelines working group [Group 2019]. We also focus our efforts by requiring type
annotations on let bindings in Oxide to avoid the orthogonal complexities of type inference, and
omitting the trait system which is largely described in the literature on typeclasses. We also do
not include operations for concurrency, as we believe borrow checking can be understood clearly
without it.

1.2 Our Contributions
Our efforts to develop Oxide have led us to five main contributions: (1) We present Oxide as the
first formal account close to safe, surface Rust. (2) Most significantly, we note that while Rust’s
borrow-checking implementation relies on constraint generation and an algorithmic constraint
solver, we provide an inductive definition of borrow checking in terms of conventional inference

rules. This definition builds on a view of lifetimes as sets of locations called regions approximating
the provenances of references, rather than abstractions of the lines of code where the referenced
memory is live. (3) This design represents a novel treatment of regions, leveraging them to manage
aliasing rather than memory itself, that we call region-based alias management. (4) We provide the
first syntactic type safety [Wright and Felleisen 1992] result for Rust, which is challenging because
we must maintain the well-typedness of values on the stack. Ordinarily, this is straightforward,
but since our values include suspended computations which can themselves introduce aliasing, we
must show that the requirements for safe aliasing in that computation are maintained throughout
the program’s execution. (5) Oxide features a tested semantics which has been validated in its
faithfulness to rustc borrow checking on the subset of features supported by Oxide using tests
from Rust’s official borrow checker and non-lexical lifetimes test suites. Thus, we posit that Oxide
serves as an explainable essence of Rust, and a solid foundation for research on and leveraging Rust.
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The rest of the paper is organized as follows: §2 describes the essence of Rust and Oxide at an
intuitive level. §3 presents the formal details of Oxide including the syntax (§3.1, §3.2, and §3.4),
type system (§3.5), operational semantics (§3.6), and metatheory (§3.7). §3.8 provides evidence that
Oxide faithfully models Rust, via discussion of our compiler Reducer from Rust to Oxide and a
type checker OxideTC used to validate that Oxide typechecking matches Rust on a subset of Rust’s
official test suite. We discuss related work in §4 and some higher-level points about Oxide in §5.
The technical appendices include complete definitions (§A, §B, §C, §D), typing rules (§B.4), and
proofs (§E). Our implementation and test suite for our tested semantics are available on GitHub.

Nothing is yours. It is to use. It is to share.
If you will not share it, you cannot use it.

The Dispossessed

Ursula K. Le Guin

2 DATA THEY CAN CALL THEIR OWN
The essence of Rust lies in its novel approach to ownership and borrowing, which account for the
most interesting parts of the language’s static semantics and the justification for its claims to
memory safety and data race freedom. In this section, we gradually introduce Oxide by exploring
example programs that illustrate key pieces of how ownership and borrowing function. At the
same time, we’ll explain the syntax in each example for readers unfamiliar with Rust.

2.1 Ownership as Use-Once Variables
Rust’s notion of ownership rests atop a long lineage of work, harkening back to the early days
of linear logic [Girard 1987], and especially efforts by Wadler [1991] and Baker [1992] to develop
systems for functional programming without garbage collection. However, as noted by Wakeling
and Runciman [1991], Wadler’s effort relied greatly on pervasive copying. This reliance on copying
and the associated performance penalty would not suffice for real world systems programming
efforts, and thus, Rust’s ownership model is best understood as instead building off of Baker’s work
on Linear Lisp where linearity enabled efficient reuse of objects in memory [Baker 1992, 1994a,b,
1995]. The resemblance is especially strong between Rust without borrowing and Baker’s ’use-once’
variables [Baker 1995]. We illustrate these ideas at work in Oxide with the following example:

1 struct Point(u32, u32);
2 let pt = Point(6, 9);
3 let x = pt;
4 let y = pt; // ERROR: pt was already moved

In this example, we first declare a type Point that consists of a pair of unsigned 32-bit integers
(u32). Then, on line 2, we create a new Point from (6, 9) and name it pt. We say that this new
value is owned by the identifier pt. Then, on line 3, we transfer this ownership by moving the value
from pt to x. Moving the value out of pt, invalidates this old name. Subsequently, when we attempt
to use it again on line 4, we encounter an error because pt was already moved in the previous line.
If we instead used x instead of pt on line 4, we would not error as each variable is used once.

2.2 Borrowing with Loans
Rust’s main departure from techniques like ’use-once’ variables [Baker 1995] is a softening of a
rather stringent requirement: namely, that everything must be managed uniquely. Instead, Rust
allows the programmer to locally make a decision to use unique references [Minsky 1996] with

https://github.com/aatxe/oxide
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unguarded mutation or to use shared references without such mutation.1 This flexibility in choosing
arises at the point where the programmer creates a new reference, and draws inspiration from
work on ownership types and flexible alias protection [Clarke et al. 1998; Noble et al. 1998]. We
again illustrate its use in Oxide with an example:

1 letrgn<'x, 'y> {
2 let pt = Point(6, 9);
3 let x = &'x shrd pt;
4 let y = &'y shrd pt; // OK: sharing is fine!
5 }

In the above example, we replaced themove expressions in each binding with borrow expressions
(written using &) that each create a shared reference to pt. Here, we also see our first syntactic
differences from Rust. Namely, in Oxide, borrow expressions include an annotation for their region
(roughly an analogue of Rust’s lifetimes) which are bound earlier using letrgn on line 2. As noted
in the comment, this program no longer produces an error because the references allow precisely
this kind of sharing, but one should note that this sharing would be disallowed by a standard linear
or affine type system. As a consequence of allowing this sharing, the type systems of both Oxide
and Rust prevent mutation through these references. To mutate through a reference, you must
instead have a unique reference (i.e. it is the only usable name for the underlying data). Our next
example replaces our shared references with unique ones:

1 letrgn<'x, 'y> {
2 let pt = Point(6, 9);
3 let x = &'x uniq pt;
4 let y = &'y uniq pt; // ERROR: cannot borrow pt uniquely twice
5 ... // additional code that uses x
6 }

We’ve now chosen to create unique, rather than shared, references to pt. However, since our
program attempts to do so twice, we encounter an error similar to the one we had in our first
example when we tried to move pt twice. The astute reader might notice that another important
change happened — we added some additional code afterward that somehow makes use of x. This
is important because of a feature in Rust known as non-lexical lifetimes (or NLL for short) [Matsakis
2016; Turon et al. 2017]. With non-lexical lifetimes and no uses of x in the ensuing code, the compiler
would figure out that this apparent violation of the uniqueness of unique references would be not
be realized since x is never used, and thus may as well not exist. As such, the program would be
accepted by the borrow checker. With the additional use of x, the violation is realized and so the
program is rejected.

Similar to the last example, the borrow checker also prevents us from mixing unique references
with shared ones, as in the following example:

1 letrgn<'x, 'y> {
2 let pt = Point(6, 9);
3 let x = &'x uniq pt;
4 let y = &'y shrd pt; // ERROR: cannot borrow pt while
5 // a unique loan is live
6 ... // additional code that uses x
7 }

In this case, we’ve changed the borrow expression on line 4 to create a shared, rather than unique,
reference. This again produces an error because Rust forbids the creation of a shared reference
1The use of “such” here is intentional as dynamically guarded mutation, e.g. using a Mutex, is still allowed through a shared
reference. Indeed, this is precisely what makes such guards useful when programming.
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while a unique loan exists. Here, we use the word loan to refer to the state introduced in the borrow
checker (which records the loan’s uniqueness and its origin) by the creation of a reference. Regions2
in Oxide (denoted 'a, 'b, etc.) can be understood as collections of these loans which together form
a static approximation of the origins of references annotated with that region. In this way, we can
think of our regions as a sort of static grouping of distinct objects in memory, and by associating
a reference with a region, we identify that the objects in memory that reference could point to
must be from the collection of loans we’ve associated with it. The borrow checker leverages this
information about the origins of references to determine whether or not a reference is safe to create
or use at a given program point.
We use the term region here because the term carries a sort of grouping association, and past

uses of region in the literature also use the term to represent a grouping of objects in memory.
However, it’s important to note the difference in how they are used! In the literature, regions are
used to manage memory [Fluet et al. 2006; Grossman et al. 2002; Tofte and Talpin 1994, 1997] with
each region representing a contiguous chunk of memory in which references are managed. By
contrast, Oxide’s regions correspond to an abstract and purely static grouping of objects in memory,
and doesn’t have any influence over where allocation happens. Instead, their use by the borrow
checker during typechecking rules out bad aliasing patterns (as we have seen so far), leading us to
refer to this approach to regions as region-based alias management.
In Oxide, we write these loans as a pair of a place and an ownership qualifier (uniq or shrd),

e.g. uniqpt would be the loan corresponding to the borrow on line 4. During typechecking, we
associate each of the regions bound with letrgn (e.g. 'x and 'y) with sets of these loans. Specifically,
after line 4, 'x will map to the loan set { uniqpt } and, after line 5, 'y will map to the loan set
{ shrdpt }. Although these examples only have single-element loan sets, more complex programs
using branching will merge loan sets making them approximate. When typechecking a borrow
expression, Oxide looks at these loan sets in the environment to determine whether or not the
borrow should be permitted.
While we were unable to create a second reference to the same place as an existing unique

reference in our past examples, Oxide and Rust both allow the programmer to create two unique
references to disjoint paths within the same object, as in the following example:

1 letrgn<'x, 'y> {
2 let mut pt = Point(6, 9);
3 let x = &'x uniq pt.0;
4 let y = &'y uniq pt.1;
5 // no error, our loans don't overlap!
6 ...
7 }

In this example, we’re borrowing from specific paths within pt (namely, the first and second
projections respectively). Since these paths give a name to the places being referenced, we refer to
them as places. Here, we see that our notion of ownership is fine-grained, allowing unique loans
against non-overlapping places within aggregate structures (like structs, enumerations, and tuples).
Intuitively, this is safe because the parts of memory referred to by each individual place (in this
case, pt.0 and pt.1) do not overlap, and thus they represent portions that can each be uniquely
owned and borrowed.

Rust supports an additional pattern that weakens conventional notions of flexible alias protection.
In particular, it allows the programmer to create a unique reference by borrowing from one they
2Historically, Rust has used the term lifetime, rather than region. Recent efforts on a borrow checker rewrite called Polonius
have transitioned to using the term origin [Matsakis 2018; Matsakis and Contributors 2020] for a similar concept to our
regions. We discuss Polonius further in §5.
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Variables 𝑥 Functions 𝑓 Type Vars. 𝛼

Frame Vars. 𝜑 Concrete Regions 𝑟 Abstract Regions 𝜚

Path 𝑞 F 𝜖 | 𝑛.𝑞
Places 𝜋 F 𝑥.𝑞

Place Exprs. 𝑝 F 𝑥 | ∗ 𝑝 | 𝑝.𝑛
Place Expr. Contexts 𝑝□ F □ | ∗ 𝑝□ | 𝑝□ .𝑛

Regions 𝜌 F 𝜚 | 𝑟
Ownership Qualifiers 𝜔 F shrd | uniq

Constants 𝑐 F ( ) | 𝑛 | true | false
Expressions 𝑒 F 𝑐 | 𝑝 | &𝑟 𝜔 𝑝 | &𝑟 𝜔 𝑝 [𝑒 ] | &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2 ]

| 𝑒1; 𝑒2 | 𝑝 ≔ 𝑒 | (𝑒1 , . . . , 𝑒𝑛) | [𝑒1 , . . . , 𝑒𝑛 ]
| letrgn <𝑟> { 𝑒 } | let 𝑥 : 𝜏si = 𝑒1; 𝑒2
| |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 }
| 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛)
| if 𝑒1 { 𝑒2 } else { 𝑒3 } | 𝑝 [𝑒 ] | abort!(str)
| for 𝑥 in 𝑒1 { 𝑒2 } | while 𝑒1 { 𝑒2 }
| Left::<𝜏si1 , 𝜏si2 > (𝑒) | Right::<𝜏si1 , 𝜏si2 > (𝑒)
| match 𝑒 { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 }

Fig. 1. Term Syntax of Oxide

already have. However, the program is unable to use the old reference until the reborrowed one
is destroyed. We produce the same behavior in Oxide, and we can see it at work in the following
example:

1 letrgn<'x, 'y> {
2 let mut pt = Point(6, 9);
3 let x = &'x uniq pt.0;
4 let y = &'y uniq *x;
5 // we can use y, cannot use x until we drop y
6 ...
7 }

In this example, we borrow the first projection of pt (pt.0) and then reborrow it by creating a
borrow to *x. We then can use y in the continuation, but won’t be able to use x until y is dropped.
This particular pattern of reborrowing is perhaps one of the most unique things about Rust’s design.

The combination of features discussed above, namely moves, shared and unique borrows, the
ability to create unique references to disjoint paths, reborrowing, and non-lexical lifetimes, makes
borrow checking extremely subtle, even when we focus on just the safe subset of Rust. In the rest
of the paper, we present Oxide and discuss how our formalism deals with this mix of features.

3 OXIDE, FORMALLY
In this section, we present Oxide’s formal semantics. We first discuss the terms in the language (§3.1),
then the types (§3.2) and regions (§3.4), and our environments and the mechanics of typechecking
(§3.5). Finally, we move on to discussion of our metatheory (§3.7) and tested semantics (§3.8).

3.1 The Syntax of Oxide
Figure 1 presents the syntax of Oxide terms, in four broad groupings: (1) metavariables for the
various kinds of names that exist, (2) places, which act as names for abstract memory locations,
(3) annotations for references, and (4) the actual terms of the language. The first group is fairly
conventional, but we’ll discuss special names like frame variables as they come up.

Places and Place Expressions. As we saw in §2.2, places 𝜋 and place expressions 𝑝 are names for
paths from a particular variable to a particular part of the object stored there, whether that be a
projection of a tuple, or a field of a struct (where a struct is really precisely just a named tuple or
record type). One might think of place expressions as a sort of syntactic generalization of variables.
They are analogous to what are called lvalues in C. Places 𝜋 are a subset of place expressions that
do not include dereferences. They can intuitively be thought of as an abstract name of a memory
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location since when bound, they will always correspond to one particular value on the stack. Place
expression contexts 𝑝□ are used in various parts of the formalism to decompose place expressions
𝑝 into an innermost dereferenced place, ∗𝜋 , and an outer context 𝑝□.

Annotations for References. In Oxide, we have two annotations that we provide for every borrow-
ing expression. First, we annotate references with ownership qualifiers 𝜔 , indicating whether the
reference is shared (shrd) or unique (uniq). We use these rather than their equivalents in Rust (no
annotation and mut respectively) because the terms more accurately reflect the semantic focus on
aliasing, rather than mutation. Indeed, in Rust, a value of the type &&mut u32 cannot be mutated
(because we have a shared reference to a unique reference), and a value of the type &Cell<u32>3
can be mutated through the method Cell::set.
Second, we annotate references with regions. Regions 𝜌 have two forms: abstract regions 𝜚

(pronounced var-rho) and concrete regions 𝑟 . Abstract regions correspond to lifetime variables
'a, 'b, etc. in Rust, and are used polymorphically in function types to indicate that the function
is agnostic to the particular regions of reference-type parameters. Concrete regions, by contrast,
carry concrete information in the environment where they correspond to a set of loans. A loan 𝜔𝑝

indicates a possible origin (𝑝), qualified by whether the loan is unique or shared (𝜔). Intuitively,
each loan tells us a single possible origin for a reference, while a concrete region maps to all possible
origins of a reference. As we will see in §3.4, regions are essential to enabling our type system to
guarantee the correct use of unique and shared references.

Expressions. Expressions 𝑒 in Oxide are numerous, but largely standard. For example, constants 𝑐
consist of the unit value ( ), unsigned 32-bit integers 𝑛, and boolean values true and false. The
most interesting expressions in Oxide are the ones we’ve already seen by example: place expression
usage (written simply 𝑝) and borrowing (with several forms that we explain shortly). The former
may be thought of as variables that behave linearly for non-copyable data (removing the place
from the environment after use), and traditionally for copyable data. (As a first approximation, one
can think of all data that is not a unique pointer as safely copyable.)

There are three borrowing forms, and all work in fundamentally the same way: they are each used
as introduction forms for references. The simplest case, written &𝑟 𝜔 𝑝 , introduces an 𝜔-reference
(with region 𝑟 ) to the location that the place expression 𝑝 evaluates to. The next form borrows from
𝑝 [𝑒] instead of simply 𝑝 , and is used to borrow an element out of an array or slice 𝑝 at the index
given by 𝑒 . The final form borrows from 𝑝 [𝑒1..𝑒2], and is used to borrow a slice of 𝑝 using the range
given by 𝑒1 and 𝑒2. A slice is Rust terminology for a dynamically-sized subsection of an array.

In these last two cases, one might wonder “why are indexing and slicing not places themselves?”
The answer comes in two parts: (1) indexing and slicing take arbitrary expressions, while places
are entirely static, and (2) unlike tuple projections which have a fine-grained notion of ownership,
indexing and slicing affect the ownership of the array or slice overall. This second part means that
while you can create two unique references to different projections of the same tuple, you cannot
create two unique references to different indices of an array.

The remainder of our expressions are standard or discussed already. These include sequencing,
assignment, and creation of tuples and arrays. Our closure syntax follows the syntax of Rust, and
thus uses vertical bars to denote the closure’s parameters. As in Rust, closures are not polymorphic;
only global functions (shown in Figure 3) may be polymorphic and specify where-bounds on
regions.4 We use function application when applying closures as well as global functions. Hence,

3Cell<T> is a Rust standard library type that provides a “mutable memory location” that allows mutation in its API.
4In Rust, where-bounds in functions are used to constrain one lifetime to outlive another, meaning that a reference with the
larger lifetime must be valid at least as long as a reference with the shorter lifetime.
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Kinds 𝜅 F ★ | RGN | FRM
Base Types 𝜏b F bool | u32 | unit

Sized Types 𝜏si F 𝜏b | 𝛼 | &𝜌 𝜔 𝜏xi

| (𝜏si1 , . . . , 𝜏si𝑛 ) | [𝜏si; 𝑛] | Either<𝜏si1 , 𝜏si2 >

| ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2
Maybe Unsized Types 𝜏xi F 𝜏si | [𝜏si ]
Dead Types 𝜏sd F 𝜏si

† | (𝜏sd1 , . . . , 𝜏sd𝑛 )
Maybe Dead Types 𝜏sx F 𝜏si | 𝜏sd | (𝜏sx1 , . . . , 𝜏sx𝑛 )
Types 𝜏 F 𝜏xi | 𝜏sx

Fig. 2. Type Syntax of Oxide

function application additionally includes polymorphic instantiation written using Rust’s turbofish
syntax (::<>). An abort!(str) indicates irrecoverable failure; it terminates the program with the
given string as a diagnostic message. Finally, Oxide includes tagged sums, which are introduced
using the Left and Right forms and eliminated using match.5

3.2 Types in Oxide
In Oxide, we have five distinct categories of types (based on two features we need to distinguish:
sized vs. unsized, and initialized vs. dead), and a kind system to track the three kinds of poly-
morphism in the language. While these distinctions may seem complex, they greatly simplify the
well-formedness conditions required on types during typechecking. The grammars are all present
in Figure 2, and are explained in detail in the rest of the section.

Sized and Unsized Types. We need to distinguish between types based on sizedness, which is
a direct consequence of Rust itself. All bindings in Rust (and in Oxide) must be able to fit on the
stack which requires that they have a statically-known size. In Rust, this is dealt with using a
special automatically-derived marker trait called Sized which serves as a tag during typechecking
to indicate that a type has a statically-knowable size. For pragmatic reasons (since one typically
works with sized types), Rust decided on using Sized? to indicate that a type is “possibly unsized”
(and thus could only be part of a type for a let binding if it is behind a reference). In Oxide, we have
a comparable syntactic distinction between sized types 𝜏si and maybe unsized types 𝜏xi. Sized types
characterize all the types with statically-known sizes and maybe unsized types 𝜏xi include all such
types and the slice type [𝜏si] which corresponds to a dynamically-sized portion of an array.

Initialized and Dead Types. We also need to distinguish between types based on initialization,
which we use to model the ’use-once’ linearity of variables referring to non-copyable data. To that
end, we introduce two categories. First, dead types 𝜏sd which is either a sized and initialized type
with a dagger on it (indicating that it is dead) or a product of dead types. These correspond to
totally moved types. Second, we have maybe dead types 𝜏sx which can be either initialized, dead,
or a product of maybe dead types, corresponding to types where some of their components have
been moved. Though not supported directly in our formalism, these dead and maybe dead types
also can be used directly to support uninitialized and partially-initialized variable bindings.

Kinds and Polymorphism. Oxide has three kinds 𝜅: the kind of ordinary types ★, the kind of
regions RGN, and the kind of frame typings FRM. (Frame typings are relevant for closures, as we’ll
see below.) We abstract over variables of each kind in Oxide and, to aid the reader, we have separate
syntax for each: 𝛼 , 𝜚 , and 𝜑 , respectively. For simplicity, Oxide restricts type variables 𝛼 to being
5Rust, of course, supports more general n-ary tagged sums with user-definable tags (calling the whole system enumerations),
but binary sums suffice to get at the essence of Rust without requiring a complicated formalization for pattern matching
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Global Environment Σ F • | Σ , 𝜀
Global Entries 𝜀 F fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

Type Environment Δ F • | Δ , 𝛼 : ★ | Δ , 𝜚 : RGN | Δ , 𝜑 : FRM | Δ , 𝜚 :> 𝜚 ′

Continuation Typing Θ F • | Θ , 𝜏si

Stack Typing Γ F • | Γ ♮ F
Frame Typing F F • | F , 𝑥 : 𝜏sx | F , 𝑟 ↦→ { ℓ }
Frame Expressions Φ F 𝜑 | F

Fig. 3. Environments in Oxide

instantiated only with sized and initialized types, but this limitation could be addressed by enriching
kinds further with a unique kind for each sort of type.

The Types Themselves. The majority of types in Oxide are sized & initialized types, including
base types 𝜏b, type variables 𝛼 , tuples (𝜏si1 , . . . , 𝜏si𝑛 ), arrays of length 𝑛 [𝜏si; 𝑛], binary sums
Either<𝜏si1 , 𝜏si2 >, references &𝜌 𝜔 𝜏xi, and function types. With the exception of references, any
types that occur within these types are themselves required to be both sized and initialized. For
reference types &𝜌 𝜔 𝜏xi, we include both the region 𝜌 and ownership qualifier 𝜔 in the type which
allow us to understand statically both a reference’s origin as well as its aliasing requirements. We
allow potentially unsized types under references since the reference itself will always have a fixed
size regardless of what it points to (e.g. 64-bit on a 64-bit machine).

Function types have three notable features. First, each function type can possibly include a frame
expression Φ (syntax in Figure 3) over the arrow indicating what bindings, if any, were caught
up in the closure environment (when nothing is captured, we put nothing over the arrow). Next,
functions are polymorphic in type and region variables, as well as in frame variables 𝜑 to enable the
use of higher-order functions. Finally, functions can relate types with abstract regions using outlives
bounds: where 𝜚1 : 𝜚2 means 𝜚1 outlives 𝜚2. These where bounds come directly from Rust, and are
useful in making functions that, e.g., reborrow from one of several reference-typed parameters.

3.3 Environments for Typechecking
With the syntax of terms and types in hand, we can look more closely at some example Oxide
programs to understand the environments we’ll be using for typechecking. We’ll start with a simple
example using reborrowing, much like our last example in §2.

1 struct Obj(u32);
2 letrgn<'y, 'z> { // 'y -> {}, 'z -> {}
3 let mut x = Obj(5); // x : Obj
4 let y = &'y uniq x /* 'y -> { uniq𝑥 } */;
5 let z = &'z uniq *y /* 'z -> { uniq𝑥 , uniq ∗𝑦 } */;
6 }

Here, we create an object named x and in the comment, we see how our stack typing (written Γ)
will record the new binding and its type. Then, on line 4, we produce a unique reference to x. In
the comment, we see the metadata produced by this borrow associating the region 'y with the set
of loans { uniq𝑥 }. This metadata means that a reference with the region 'y must necessarily point
to x. Note that this metadata is produced immediately after the borrow expression, and doesn’t
depend on the binding y being introduced for it. Then, on line 5, we reborrow from y as z, and
again, we can see the corresponding metadata produced associating the region 'z with the set of
loans { uniq𝑥 , uniq ∗𝑦 }. Note that borrowing ∗𝑦 here means reborrowing from y. This tells us two
things: (1) that a reference with the region 'z points to x, and (2) that a reference with the region
'z was created by reborrowing from y. That latter means that y ought to be rendered unusable
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Δ; Γ; Θ ⊢𝜋𝜔 𝑝 ⇒ { 𝜔𝑝′ } where Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { 𝜔𝑝′ } means Δ; Γ; Θ ⊢•𝜔 𝑝 ⇒ { 𝜔𝑝′ }.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

Fig. 4. Ownership Safety in Oxide

as long as our reference z (with region 'z) exists. The two pieces of information we’ve seen here,
in-scope bindings with their types and borrowing metadata, are precisely what’s necessary for us
to track in our stack typing Γ, and each entry follows the syntax seen here. In this next example,
we’ll see a bit more complexity by defining and using a closure.

1 let x = Obj(5); // x : Obj
2 let y = Obj(9); // y : Obj
3 letrgn<'z> { // z -> {}
4 let f = |obj: &'z uniq Obj| -> Obj { Obj((*obj).0 + y.0) }; // 𝑦 : 𝑂𝑏 𝑗†
5 let z = &'z uniq x /* 'z -> { uniq𝑥 } */;
6 f(z) // 𝑧 : (&′𝑧 uniq𝑂𝑏 𝑗)†
7 }

We create two objects named x and y respectively. Then, on lines 4-6, we define a closure named
f that moves y from the context. This movement is described by the annotation on line 6 that
shows the new entry for y in our stack typing Γ. This new entry differs in that the type associated
with y is marked with a dagger indicating that it is now dead. On line 7, we create a reference z
that we then pass on line 8 as an argument for f. On line 7, we also see the annotation for the
region indicating that a reference with region 'z must point to x, much like we saw in the previous
example. In the comment on line 8, we see that the use of z moved it into the function call as well,
thus we mark its whole type with the dagger.
One question that might arise here is “given we marked it dead, how are we still allowed to

use y inside the closure?” This is an important point that leads to a key aspect of the structure
of our stack typing Γ. The low-level nature of Oxide means we need to actually statically record
the frame-based structure of the stack at runtime. So, when we construct this closure, the moved
objects (in this case, solely y) are recorded in a new frame F that is tracked in the type of the
closure, ∀<>(&′𝑧 uniq Obj) F→ Obj. This frame provides the type information necessary to
typecheck the body in the future, and the closure at runtime has a corresponding stack frame
as part of its value form. When we typecheck the body of the closure, they are appended to the
current stack typing with ♮ . So, our stack typing is really a collection of frames F separated by ♮
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and our frames F contain both in-scope bindings with their types and in-scope regions with their
associated loan sets. As the language of stacks and frames may imply, both stack typings Γ and
frames F are ordered which makes it easier to state invariants like outlives (which we will see in
§3.5) and resolves many of the typical issues that arise formally with variable binding.
This is all formally-defined in Figure 3 which features a grammar for all of the environments

used in the static semantics. As suggested by the grammars, there are two other environments that
are non-conventional. First, we have a global environment Σ which consists of a series of top-level
function definitions. We define the well-formedness of these function definitions by saying that
their bodies must be well-typed assuming that all other functions (including itself) are well-typed at
their annotated type, which enables a simple treatment of mutually recursive function definitions.
Second, we have a temporary typing Θ which consists of a sequence of types for parts of objects
that will be in the continuation of the term being typechecked. The need for this is subtle, but we
will explain it using the following example:

1 letrgn<'a, 'b> {
2 let x = Obj(5);
3 let y = Obj(9);
4 let tup = (&'a uniq x, (); &'b uniq x);
5 }

In this example, we create two objects x and y and then attempt to create a pair named tup that
consists of two unique references. Exactly as written, we first uniquely borrow x with region 'a
and then in the second component, we sequence a unit value with a unique borrow of x with region
'b. Of course, the very idea of having a product of unique references to the same data sounds like a
contradiction and so we would hope to reject this program! However, to capture the expressivity
of Rust’s borrow-checking in Oxide, we also have to clear loan sets associated with unused regions
at sequencing points in programs. This leads to a dilemma: by reading the program, we know that
the first reference with region 'a is still used when we go to define the second one, but the naive
definition of use would correspond to “is there currently a reference with that region in the stack
typing?” The continuation typing comes in to resolve this. We don’t have a name (yet) for the
already-typechecked portions of a product, but we can record their types in the continuation typing
to record that they are around since they may then be let-bound and used further in the program.
We’ll see formally how this interaction happens during typechecking in the T-Tuple rule in §3.5.

Now, we can look at the shape of our typing judgment, which we will return to define in §3.5. The
shape of our typing judgement is Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′. This is read: with global environment Σ,
type environment Δ, temporary typing Θ, and stack typing Γ, 𝑒 is a well-typed expression of type 𝜏
with an updated stack typing Γ′ for use in typechecking the continuation of 𝑒 .

3.4 Region-Based Alias Management
As discussed in §3.1, borrow expressions in Oxide all have region annotations which are used to
associate references statically with information about their possible referents. This information is
essential to our formulation of borrow checking since we leverage it to determine if new references
would be safe to create. This is done formally with a judgement called ownership safety which has
the form Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { 𝜔𝑝 ′ }. We can read it as saying “in the environments Δ and Γ, it is
safe to use the place expression 𝑝 𝜔-ly and producing all of the loans in { 𝜔𝑝 ′ } (called the borrow
chain).,” where 𝜔 is either uniq or shrd. That is, if we have a derivation where 𝜔 is uniq, we know
that we can use the place expression 𝑝 uniquely because we have a proof that there are no live loans
against the section(s) of memory that 𝑝 represents. Further, when we have a derivation where 𝜔 is
shrd, we know that we can use the place expression 𝑝 sharedly because we have a proof that there
are no live unique loans against the section(s) of memory that 𝑝 represents. The produced borrow
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chain is used to create the borrowing metadata to store in the environment when the ownership
safety check is guarding a borrow expression, and in the simplest case, is just precisely 𝑝 .

Since it is precisely this ownership safety judgment that captures the essence of Rust’s ownership
semantics, we understand Rust’s borrow checking system as ultimately being a system for statically
building a proof that data in memory is either uniquely owned (and thus able to allow unguarded
mutation) or collectively shared, but not both. To do so, intuitively, ownership safety looks at all
of the concrete regions in Γ, and ensures that all the loans they map to are not in conflict with
the place expression 𝑝 we are attempting to use. For a uniq borrow, a conflict occurs if any loan
maps to an overlapping place, but for a shrd borrow, a conflict occurs only when a uniq loan maps
to an overlapping place. Since places are abstract memory locations, we can consider two places
as overlapping if they are equal or one is a prefix of the other (meaning that the the longer place
corresponds to a piece of the larger object in memory that the shorter place refers to).
Unfortunately, reborrowing complicates matters. To support reborrowing, ownership safety

uses an expanded inner form written Δ; Γ; Θ ⊢𝜋𝜔 𝑝 ⇒ { 𝜔𝑝 ′ }, which says that 𝑝 is 𝜔-safe
under Δ and Γ, with reborrow exclusion list 𝜋 , and produces the loans { 𝜔𝑝 ′ }. Intuitively, we use
this reborrow exclusion list 𝜋 to rule out precisely the loan conflicts that arise from reborrowing
as a programming pattern — namely, a reference conficting with loans from a reference it was
reborrowed from. Reborrowing is also what causes the borrow chain to contain more than just 𝑝 for
two reasons: (1) we may be reborrowing from a reference whose region has already lost precision,
i.e. contains multiple loans, and thus we cannot have perfect information about the reborrowed
reference either, and (2) the reborrowed borrow chain will include an additional loan that records
that it was reborrowed (e.g. a unique loan for a reborrow from x would appear as uniq ∗𝑥 ). This
second point is precisely what produces the chain aspect of the borrow chain since we can use this
information in each loan set to follow a series of consecutive reborrows.
Formally, the first rule, O-SafePlace, checks if a place 𝜋 is 𝜔-safe by looking at each loan in

every region 𝑟 ′ in Γ and either (1) making sure that if either that loan or 𝜔 is uniq then 𝜋 does not
overlap with the loan; or (2) checking that all references in Γ with region 𝑟 ′ are in the reborrow
exclusion list (meaning we need not check if there is overlap with 𝜋 ).
The next two rules check if a place expression 𝑝 is 𝜔-safe, decomposing the place expression

into a place expression context 𝑝□ (see Figure 1) with ∗𝜋 in the hole. The last two lines of premises
for both essentially ensure that either (1) or (2) holds, but each one adds to the incoming reborrow
exclusion list when checking (2) by also including the place itself 𝜋 along with all of the places 𝜋 𝑗

that 𝜋 was borrowed from according to the loan set 𝑟 associated with its type. Both rules also check
𝜔 ≲ 𝜔𝜋 (defined as the reflexive closure of shrd ≲ uniq) in order to ensure that the reference has
sufficient permission to be used, preventing a dereference of a uniq reference in a shrd context.
Unlike O-DerefAbs, O-Deref is dereferencing a reference 𝜋 with a concrete region 𝑟 . As such,

we can look at the loans present for 𝑟 in the stack typing. These loans consist of both direct loans
to places 𝜋 𝑗 which correspond to a possible origin for the reference, and indirect loans to place
expressions 𝑝 𝑗 which capture how this reference was reborrowed from other references. As such,
when we recursively check for the safety of these regions, we append the reborrow origins (the 𝜋 𝑗

prefixes of these 𝑝 𝑗 ) to the reborrow exclusion list. This means that they will not be considered as
possible conflicts in the rest of ownership safety. At the end, we union together the borrow chains
from all the possible origins to determine our final borrow chain. We also include an additional
loan 𝜔𝑝□ [∗𝜋] to indicate that this use was reborrowed from ∗𝜋 .
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Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′

T-u32

Σ; Δ; Γ; Θ ⊢ 𝑛 : u32 ⇒ Γ

T-Move
Δ; Γ; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋 ) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
† ]

T-Copy
Δ; Γ; Θ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ ⊢shrd 𝑝 : 𝜏si copyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝑝 : 𝜏si ⇒ Γ

T-Borrow
Γ (𝑟 ) = ∅ Γ; Θ ⊢ 𝑟 rnic

Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

T-LetRegion
Σ; Δ; Γ , 𝑟 ↦→ {}; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ }

Σ; Δ; Γ; Θ ⊢ letrgn <𝑟> { 𝑒 } : 𝜏si ⇒ Γ′

T-Branch
Σ; Δ; Γ; Θ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ1; Θ ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Δ; Γ3; Θ ⊢+ 𝜏si3 { 𝜏si ⊣ Γ′3 Γ′2 ⋓ Γ′3 = Γ′

Σ; Δ; Γ; Θ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ′

T-Seq
Σ; Δ; Γ; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1

Σ; Δ; gc-loansΘ (Γ1) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ; Θ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

T-Let
Σ; Δ; Γ; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Δ; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si𝑎 ⊣ Γ′1

∀𝑟 ∈ free-regions(𝜏si𝑎 ) . Γ′1 ⊢ 𝑟 rnrb Σ; Δ; gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

T-Drop
Γ (𝜋 ) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

T-AssignDeref
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si𝑛 ⇒ Γ1 Δ; Γ1 ⊢uniq 𝑝 : 𝜏si𝑜

Δ; Γ1; Θ ⊢+ 𝜏si𝑛 { 𝜏si𝑜 ⊣ Γ′ Δ; Γ′; Θ ⊢uniq 𝑝 ⇒ { ℓ }
Σ; Δ; Γ; Θ ⊢ 𝑝 ≔ 𝑒 : unit ⇒ Γ′

T-Assign
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ1 Γ1 (𝜋 ) = 𝜏sx 𝜏sx = &𝑟 𝜔 𝜏xi =⇒ 𝑟 is unique to 𝜋 in Γ1

Δ; Γ1 ▷− ∗𝜋 ; Θ ⊢= 𝜏si { 𝜏sx ⊣ Γ′ (𝜏sx = 𝜏sd ∨ Δ; Γ′; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 })
Σ; Δ; Γ; Θ ⊢ 𝜋 ≔ 𝑒 : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si ]

T-Closure
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 free-nc-varsΓ (𝑒) \ 𝑥 = 𝑥𝑛𝑐

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 )))

F𝑐 = 𝑟 ↦→ Γ (𝑟 ) , 𝑥𝑓 : Γ (𝑥𝑓 ) ∀𝑟𝑝 ∈
𝑛⋃
𝑖=1

free-regions(𝜏si𝑖 ) ∪ free-regions(𝜏si𝑟 ) . Γ (𝑟𝑝 ) = ∅

Σ; Δ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐 )† ] ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ′

T-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ0; Θ ⊢ (𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛 ) ⇒ Γ𝑛

T-While
Σ; Δ; Γ; Θ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ2; Θ ⊢ 𝑒1 : bool ⇒ Γ2 Σ; Δ; Γ2; Θ ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ; Θ ⊢ while 𝑒1 { 𝑒2 } : unit ⇒ Γ2

T-Abort

Σ; Δ; Γ; Θ ⊢ abort!(str) : 𝜏sx ⇒ Γ

Fig. 5. Selected Oxide Typing Rules
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3.5 Typechecking Oxide Programs
Figure 5 presents a selection of Oxide typing rules. In every rule, we highlight the expression being
typechecked with a framebox . The shape of our typing judgement is Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′: we
typecheck 𝑒 in a global environment Σ, type environment Δ, temporary typing Θ, and stack typing
Γ, producing an updated stack typing Γ′ for typing the continuation of 𝑒 . These rules rely on the
region rewriting and outlives judgments (Figure 6), which we’ll discuss below, and the ownership
safety judgment (Figure 4), which we discussed in §3.4. We elide the various well-formedness
judgments (for types, stack typings, etc.); see the appendix (§B.1).
To best understand our typing judgment as a whole, it is useful to first know a bit about what

lies ahead in the metatheory (§3.7). In our type preservation proof, we need to maintain the well-
typedness of values stored on the stack in Oxide. Since our values include closures which themselves
may introduce more aliasing, we then need to maintain our ownership safety judgment. To make
this possible, there are a number of restrictions that arise throughout the type system on how
regions annotate the program (and discussed further in §5). We urge readers to keep this in mind.

Moving. In Oxide, as in Rust, owned values are moved or copied out of a place 𝜋 when used,
just as we saw in our first example in §2.1 where pt was moved to x and thus could not be bound
again to y. In order to move 𝜋 , three conditions must hold: (1) 𝜋 must be able to be used uniq-ly
(checked using the ownership safety judgment in Figure 4 from §3.4); (2) 𝜋 must have a sized and
initialized (not dead) type 𝜏si in Γ; and (3) this type 𝜏si must be noncopyable.6 If these requirements
hold, then we use a dagger to mark the place 𝜋 dead in the continuation stack typing, preventing
further expressions from reusing it. Requirement (1) is needed to ensure that we do not invalidate
any existing references to 𝜋 by moving it and requirement (2) ensures that there is currently data
owned by 𝜋 . If requirement (3) does not hold, we’ll copy rather than move which permits more
programs to typecheck since T-Copy does not mark the copied place dead in the continuation stack
typing as T-Move does. Further, unlike moves (which are disallowed through dereferences, leading
to the restriction to places 𝜋 rather than place expressions 𝑝 in T-Move), the copying variant T-Copy
can happen through a dereference and thus handles place expressions generally.

Borrowing. As with moving, borrowing &𝑟 𝜔 𝑝 relies on our ownership safety judgment (Figure 4)
with the uniq and shrd modalities corresponding precisely to the invariants of unique and shared
pointers. Namely, when 𝜔 is uniq, we require that the place expression 𝑝 have no extant loans
in Γ and when 𝜔 is shrd, we require no extant unique loans. To actually know the type of the
reference as a whole, we also have to know the type of the place expression itself and we rely on
an auxillary judgment Δ; Γ ⊢𝜔 𝑝 : 𝜏xi (defined in the appendix) to compute the type 𝜏xi by starting
with the type of its root identifier and following the sequence of projections and dereferences from
𝑝 through the type. For example, if we had the place expression *(x.0) where x is a product of
references with the type &'a uniq u32, this judgment would produce the type u32. Much like how
T-Move updates the continuation stack typing to prevent further uses of the moved place, T-Borrow
updates the continuation stack typing to associate the region 𝑟 used for the borrow with the loans
that represent where the new reference may point (i.e. its provenance). In many simple cases (such
as borrowing a binding x with type u32), there will be only one loan (corresponding to precise
knowledge of where it points), but as we will see with branching, these loan sets may grow larger
to account for information loss inherent to static analysis of reference provenance.

6We’ve elided definitions of copyable and noncopyable, but they’re straightforward. Intuitively, a type is safe to copy if
none of its constituent parts are unique. Thus, all types that don’t contain a unique reference are copyable. Generic types
are always non-copyable. In Rust, copyable is actually the Copy trait, but copyable can be thought of as special casing it.



Oxide: The Essence of Rust 1:15

Region Rewriting and Outlives. We examine region rewriting next (Figure 6) since some of the
typing rules discussed below require it. The region rewriting judgment Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′

says under Δ, Θ, and Γ, we can rewrite the regions from 𝜏1 into the corresponding regions in
𝜏2 which will then be interpreted under Γ′. We produce an output Γ′ with updated regions to
be used when typing the continuation after an appeal to region rewriting. The need for this
judgment arises from the need for values to be given the same type, in spite of the fact that
they can be annotated differently originally. Consider, for example, a branching term such as
if cond { &'a uniq x } else { &'b uniq y }. In this case, the type of each side of the branch
will be something like &'a uniq u32 and &'b uniq u32 respectively, but we need to give an overall
type for the term. To deal with this, we pick one of the two types and use rewriting to write the
other one into the chosen type. For safety reasons, we pick the region with the shortest scope.

The rewriting judgment itself is fairly straightforward: it is reflexive and transitive. Each rule for
larger types recursively rewrites in any smaller types, threading the output environment much
like our typing judgment. The actual rewriting portion arises, as one might expect, in the rule for
references (RR-Reference) which appeals to a judgment on regions which says that the region from
𝜏1 outlives the region from 𝜏2 while performing the work required to enable the rewriting.

The outlives judgment (Figure 6) Δ; 𝜌1; Γ ⊢𝜇 𝜌2 :> Γ′ ⊣ says under Δ and Γ, 𝜌1 outlives 𝜌2
rewriting the latter in Γ′ according to the mode 𝜇. Every region outlives itself (reflexivity). An
abstract region outlives another if there’s a corresponding outlives relation in Δ (OL-BothAbstract)
or if we can transitively put together outlives relations from Δ (OL-Trans).7 OL-CombineConcrete
(in + mode) says that 𝑟1 outlives 𝑟2 if it occurs earlier than 𝑟2 in Γ. It also requires that there not
exist any references with either region which have been reborrowed (Γ ⊢ 𝑟1 rnrb and Γ ⊢ 𝑟2 rnrb,
where rnrb is an abbreviation for region-not-reborrowed). This invariant ensures that value typing
is preserved under region rewriting. When this is the case, the output typing Γ′ is updated to
associate 𝑟2 with the union of the loans from both 𝑟1 and 𝑟2. The variant OL-CheckConcrete (in =

mode) has the same obligations, but instead leaves the output unchanged. The behavioral difference
between these rules is the reason for the rewriting modes.

The last two rules say when a concrete region outlives an abstract one and vice versa. In essence,
a concrete region 𝑟 can only outlive an abstract region 𝜚 (OL-ConcreteAbstract) if 𝑟 was reborrowed.
The first two premises check for reborrowing: 𝑟 ’s loan set must be non-empty (otherwise there is
no reborrow), and must consist solely of place expressions 𝑝 (since place expressions, unlike places,
contain dereferences, which identifies this as a reborrow instead of a borrow). The third premise
collects all the regions 𝜌𝑖 that annotate any references dereferenced in each place expression 𝑝𝑖 (see
the type-computation judgment Δ; Γ ⊢𝜔 𝑝 : 𝜏, { 𝜌 } in the appendix (§B.5)), while the last premise
ensures that all of these outlive 𝜚 . The final rule, OL-AbstractConcrete, says that an abstract region
always outlives a concrete region. This is subtle but makes sense because any abstract region 𝜚 is
bound in a top-level function (recall that closures don’t abstract over regions), while a concrete
region 𝑟 must be bound by letrgns inside the function body. Ultimately, any concrete region 𝑟 ′

that gets substituted for 𝜚 upon application will already exist before 𝑟 (even for recursive calls),
meaning it outlives 𝑟 .

Branching and Sequencing. The next two rules illustrate how stack typings are threaded through
larger programs since the form of our typing judgment requires each rule to specify its continuation’s
stack typing. T-Branch uses the stack typing Γ1 that we get from typing the conditional 𝑒1 when
typing each of the two branches. The type 𝜏si ascribed to the overall expression must be a supertype
of the types 𝜏si2 and 𝜏si3 of each branch and equal to one of them. Additionally, branching uses a
union operation ⋓ to combine the output stack typings from each branch to produce the final
7We do not need transitivity for concrete regions beyond what we can already conclude from the remaining OL rules.



1:16 Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed

Region Rewriting Modes 𝜇 F + | ⊞ | =

Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′

RR-Refl

Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏1 ⊣ Γ

RR-Trans
Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ Δ; Γ′; Θ ⊢𝜇 𝜏2 { 𝜏3 ⊣ Γ′′

Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏3 ⊣ Γ′′

RR-Dead
Δ; Γ; Θ ⊢𝜇 𝜏si1 { 𝜏si2 ⊣ Γ′

Δ; Γ; Θ ⊢𝜇 𝜏si1 { 𝜏si
†

2 ⊣ Γ

RR-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ𝑛−1; Θ ⊢𝜇 𝜏𝑖 { 𝜏′𝑖 ⊣ Γ𝑖

Δ; Γ; Θ ⊢𝜇 (𝜏1 . . . 𝜏𝑛) { (𝜏′1 . . . 𝜏′𝑛) ⊣ Γ𝑛

RR-Reference
Δ; Γ; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣ Γ′ Δ; Γ′; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′′

Δ; Γ; Θ ⊢𝜇 &𝜌1 𝜔 𝜏1 { &𝜌2 𝜔 𝜏2 ⊣ Γ′′

Δ; Γ; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣ Γ′

OL-Refl

Δ; Γ; Θ ⊢𝜇 𝜌 :> 𝜌 ⊣ Γ

OL-Trans
Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚2 ⊣ Γ′

Δ; Γ′; Θ ⊢𝜇 𝜚2 :> 𝜚3 ⊣ Γ′′

Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚3 ⊣ Γ′′

OL-BothAbstract
𝜚1 : RGN ∈ Δ 𝜚2 : RGN ∈ Δ 𝜚1 :> 𝜚2 ∈ Δ

Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚2 ⊣ Γ

OL-CombineConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb Γ; Θ ⊢ { 𝑟1 , 𝑟2 } clrs
𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)

Δ; Γ; Θ ⊢+ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

OL-CombineConcreteUnrestricted
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb

𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)
Δ; Γ; Θ ⊢⊞ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

OL-CheckConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb
𝑟1 occurs before 𝑟2 in Γ

Δ; Γ; Θ ⊢= 𝑟1 :> 𝑟2 ⊣ Γ

OL-AbstractConcrete
𝜚 : RGN ∈ Δ 𝑟 ∈ dom(Γ)

Δ; Γ; Θ ⊢𝜇 𝜚 :> 𝑟 ⊣ Γ

OL-ConcreteAbstract
Γ1,0 (𝑟 ) = { 𝜔𝑝

𝑛 } ≠ ∅ ∀𝑖 ∈ { 1 . . . 𝑛 }. �𝜋. 𝑝𝑖 = 𝜋 ∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ0 ⊢shrd 𝑝𝑖 : _, 𝜌𝑖𝑚𝑖

𝜚 : RGN ∈ Δ ∀𝑖 ∈ { 1 . . . 𝑛 }.∀𝑗 ∈ { 1 . . . 𝑚𝑖 }. Δ; Γ𝑖,𝑗−1; Θ ⊢𝜇 𝜌𝑖,𝑗 :> 𝜚 ⊣ Γ𝑖,𝑗

Δ; Γ1,0; Θ ⊢𝜇 𝑟 :> 𝜚 ⊣ Γ𝑛,𝑚𝑛

Fig. 6. Region Rewriting and Outlives Relations in Oxide

stack typing Γ′ for the overall expression. ⋓ requires that types of bound variables in the two stack
typings be equal (which potentially demands use of T-Drop when typing the branches), and unions
the loan sets for each region 𝑟 from both stack typings (full definition in technical appendix). Note
that we only need to union stack typings with identical domains — we typecheck both branches
under Γ1 so they produce output stack typings with the same domains (since let and letrgn are
the only means for introducing variables and regions, but both are lexically-scoped), and region
rewriting does not change the domain of stack typings between its input and its output.

When typing 𝑒1; 𝑒2, we typecheck 𝑒2 under the stack typing Γ1 we got from typechecking 𝑒1. But,
importantly, we apply a metafunction gc-loansΘ (·) to Γ1 to empty out the loan sets of regions not
used in Γ1 before typing 𝑒2 because 𝑒1 may have been a unique reference that is thrown away at
runtime before moving on to 𝑒2. Without garbage collecting loans, Oxide would reject programs
that are safe and accepted by Rust. Namely, this clearing allows us to handle the sort of “early
dropping of references” inherent to non-lexical lifetimes. Specifically, gc-loansΘ (Γ) empties out
the loan set of each 𝑟 that does not appear in any of the types in Γ or Θ. The full formal definition
is present in the technical appendix.
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Binding. In Oxide, T-Let is interesting in three ways. First, we allow rewriting in T-Let to a
specified annotated type. This rewriting allows us to change the regions in the computed type to
match the annotated type by conservatively combining the loans associated with each region into
the output, as described earlier in the section on region rewriting. Then, similar to sequencing,
T-Let uses the metafunction gc-loansΘ (·) to eliminate any loans that might be unnecessary as a
result of 𝑒1 potentially being promoted to the annotated type 𝜏si𝑎 . Additionally, in the output stack
typing from 𝑒2, we see that our binding for 𝑥 must have a dead type 𝜏sd with the whole binding
being dropped in the overall stack typing Γ2 output from T-Let (since the scope of 𝑥 ends at that
point). The requirement that the type be dead means we must have either used T-Move to move
out of that binding or we must have explicitly used T-Drop on 𝑥 in the derivation for 𝑒2, and can
be thought of as a formalization of the “resource acquisition is initialization” pattern [Stroustrup
1994] since we are explicitly requiring a first-in-last-out allocation/deallocation pattern and require
everything to have been used in either a move or a drop before we can end its scope.

Drop. As alluded to in the previous two paragraphs, Oxide has a rule called T-Drop which is
used non-deterministically during typechecking to mark a particular place 𝜋 as being dead. This
rule corresponds roughly to a conventional weakening rule where 𝜋 “doesn’t exist” (in this case,
is dead) in the premise, but exists in the conclusion. The main difference is that while the data is
thought to be deallocated, the name is still in-scope to be dropped when its scope ends in T-Let.

Assignment. Assignment is interesting in a few ways. First, assignment is broken up into two
rules T-Assign and T-AssignDeref where the former is able to assign to a place 𝜋 that is dead, and
the latter is able to assign to a place through a reference (i.e. by using dereferencing). The basic
structure of each rule is the same. For both rules, we typecheck the new expression to be assigned,
look up the type of the place we’re assigning to (a lookup in T-Assign and a type computation
in T-AssignDeref), check compatibility of the new expression’s type with the type of the place
we’re assigning to, and then finally check that it’s safe to use the place we’re assigning to uniquely
according to ownership safety.

The differences between the two play a fundamental role in allowing us to appropriately model
how assignment works in Rust. Notably, the region rewriting judgment in T-Assign uses the checking
mode (denoted =) to limit how conservative the borrow checker need be after an assignment. As
discussed earlier, this mode does not change its output environment (thus, Γ′ = Γ1▷− ∗𝜋 in T-Assign).
This is okay in context because after the typing rule is done, the type of 𝜋 is updated to 𝜏si (the type
of its new value) in the continuation. A similar update in T-AssignDeref would entail updating the
types of arbitrarily many bindings, and so instead the more conservative combine mode (denoted
+) is used. Further, in T-Assign, we employ the operation Γ1 ▷− ∗𝜋 for the input environment to the
region rewriting judgment. This operation is defined to remove any loans prefixed by ∗𝜋 from
every loan set in Γ1. The ▷− operation (informally called the “kill rules” in Rust) amounts to erasing
reborrowing relationships that no longer hold as a result of this assignment.

Concretely, consider an environment with two references, one named xwith type &'x uniq u32
and another named y reborrowed from x with type &'y uniq u32. This means in our environment
we would have loan sets that look something like 'x ↦→ { ℓ } and 'y ↦→ { ℓ , uniq ∗𝑥 }. If we were
to then assign to x some unrelated reference, the kill rules would delete the loan ∗𝑥 in the loan set
of 'y since after the assignment ran, the two would represent distinct and disjoint references.
The last difference between the two assignment rules is presence of an additional obligation

in T-Assign: 𝜏sx is unique to 𝜋 in Γ1. This obligation means that there are not any places in Γ1 that
share the outermost region of 𝜏sx (i.e. if 𝜏sx = &𝑟 𝜔 𝜏xi, then 𝑟 would be its outermost region). This
allows us to guarantee that the garbage collection discussed for the sequencing rule will always
clear out this outermost region 𝑟 before the subsequent expression is typechecked, helping us
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T-AppClosure
Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 : ∀<> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ𝑐→ 𝜏si

𝑓
⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 . . . 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si
𝑖′ ⇒ Γ𝑖 Δ; Γ𝑖 ; Θ ⊢⊞ 𝜏si

𝑖′ { 𝜏si𝑖 ⊣ Γ′𝑖
∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ′𝑛 ⊢ 𝑟 rnrb

Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
⇒ Γ′𝑛

Fig. 7. Oxide Typing Rule for Application

greatly in our proofs. It’s important to note that this obligation pertains to annotations added to
the Oxide program compared to Rust, and so it only limits the patterns of region annotation that
can be applied, rather than the space of Rust programs that can be typechecked in Oxide.

Closures and Application. Closures in Oxide correspond to move closures in Rust which move or
copy their free variables from the outer environment into the closure.8 As such, T-Closure must
compute the captured frame by looking at the free variables (and free regions) of the closure’s
body, and it must mark dead (add daggers to the types of) any variables in the stack typing with
non-copyable types. The captured frame is suspended over the arrow in the function type to keep
track of the fact that the data caught up in the closure is still alive (and thus must be considered in
ownership safety). We elide the rule for top-level function definitions, which gives a function 𝑓 the
type that 𝑓 is annotated with in Σ, relying on well-formedness of Σ to know that this is okay.

The rule for application (T-AppClosure in Figure 7) is roughly as one would expect: we typecheck
the function, and then the arguments, threading through the environments. However, at each
step, we do a region rewriting using the unrestricted combine mode (denoted ⊞) for the computed
argument types to the annotated parameter types. This unrestricted mode allows us to push loans
from the surrounding context into the regions used in the closure’s signature, a behavior ruled
out by the conventional combine mode (+) because they would enable degenerate annotation
patterns that make it difficult to prove soundness. For top-level functions, we have an additional
rule T-AppFunction in the technical appendix that does not use a rewriting for the types, but
(1) substitutes all frame, type, and region variables in the types and (2) checks that any outlives
bounds specified on the function signature hold (via outlives in Figure 6). This does not appear in
T-AppClosure since closures cannot be polymorphic, nor can they possess where bounds.

Values and Aggregates. The typing rules for base types (T-u32, T-True, T-False, etc.) are standard,
and leave the type environment unchanged in their output. Aggregate structures like tuples check
the types of their components while threading through the environments in left-to-right order.
This left-to-right ordering for typechecking corresponds to the ordering implemented by Rust’s
typechecker and borrow checker. One subtlety to note (discussed already with the last example
in §3.3) is that when typechecking a component 𝑒𝑖 of the tuple, we add the types of all earlier
tuple components to the temporary typing Θ. This is needed because 𝑒𝑖 might be a let-binding or
sequencing expression that invokes gc-loansΘ (·) on its environment during typechecking. If the
types of the earlier tuple components we’ve just typechecked aren’t present in the environment,
to serve as roots for the regions mentioned in those types, we may end up incorrectly garbage
collecting the loans that these regions map to. This would make programs with subsequent borrows
typecheck even when the borrow should not be allowed. The elided typing rule for arrays is similar.

The formalism of Oxide omits a specific treatment of structs, but we note that they are essentially
the same as tuples, only featuring a tag that must also be checked. Our implementation which we
discuss in §3.8 relies on exactly this approach to support structs.
8Rust’s standard closures implicitly introduce borrowed temporaries for all the free variables. We can recover this behavior
via a simple, local transformation to move closures.
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Referent R F 𝑥 | R .𝑛 | R [𝑛] | R [𝑛1 ..𝑛2 ]
Expressions 𝑒 F . . . | framed 𝑒 | shift 𝑒

| ⟦𝑣1 , . . . , 𝑣𝑛⟧ | dead | ptr R
| ⟨𝜍 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩

Eval. Contexts C F □ | &𝜌 𝜔 𝑝 [C] | &𝜌 𝜔 𝑝 [C..𝑒 ] | &𝜌 𝜔 𝑝 [𝑣..C]
| let 𝑥 : 𝜏si = C; 𝑒 | letrgn <𝑟> { C }
| 𝑝 ≔ C | C; 𝑒 | framed C | shift C | shiftprov C
| C::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛)
| 𝑣::<Φ , 𝜌 , 𝜏si> (𝑣1 , . . . , 𝑣𝑚 , C , 𝑒1 , . . . , 𝑒𝑛)
| 𝑝 [C] | if C { 𝑒1 } else { 𝑒2 } | while 𝑒1 { 𝑒2 }
| (𝑣1 , . . . , 𝑣𝑚 , C , 𝑒1 , . . . , 𝑒𝑛)
| Left::<𝜏si1 , 𝜏si2 > (C) | Right::<𝜏si1 , 𝜏si2 > (C)
| match C { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 }

Values 𝑣 F 𝑐 | 𝑓 | dead | (𝑣1 , . . . , 𝑣𝑛) | [𝑣1 , . . . , 𝑣𝑛 ] | ⟦𝑣1 , . . . , 𝑣𝑛⟧ | ptr R
| ⟨𝜍 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩

Value Contexts V F □ | (𝑣1 , . . . , V , . . . , 𝑣𝑛) | [𝑣1 , . . . , V1 , . . . , V𝑚 , . . . , 𝑣𝑛 ]
Stacks 𝜎 F • | 𝜎 ♮ 𝜍

Stack Frame 𝜍 F • | 𝜍 , 𝑥 ↦→ 𝑣

Fig. 8. Oxide Syntax Extensions for Dynamics

Remaining Rules. The remaining rules in Figure 5 are straightforward or covered earlier. Elided
typing rules all concern arrays and are given in the technical appendix (§B.4) .

3.6 Operational Semantics
For our operational semantics, we extend the syntax of Oxide in Figure 8 with terms that only arise
at runtime. First, to be able to specify what “address” a pointer points to, we introduce an abstract
form of memory addresses called referents. Referents R essentially record what the offsets are from
a variable on the stack in order to specify a precise “memory address,” (e.g., a particular element
of an array or tuple, or a particular slice of an array). We also include some administrative forms:
(1) framed 𝑒 and shift 𝑒 which are used when evaluating application and let bindings discussed
below, (2) dead (the dead value), and (3) ⟦𝑣1 , . . . , 𝑣𝑛⟧which is a dynamically-sized slice of an array.
Then, we introduce value forms including pointers to referents, and closures packaged with their
environment 𝜍 . Figure 8 also includes stacks 𝜎 as a sequence of stack frames 𝜍 , and value contexts
V which allow array values to be decomposed with multiple holes when dealing with slices.
In Figure 9, we present a selection of our small-step operational semantics which is defined

using Felleisen and Hieb-style left-to-right evaluation contexts [Felleisen and Hieb 1992] over
configurations of the form (𝜎 ; 𝑒 ). Since our semantics uses referents R as an abstract version
of memory addresses, some of our rules rely on a notion of place-expression evaluation, 𝜎 ⊢ 𝑝 ⇓
R ↦→ V[𝑣] (Figure 9, top), which should be read as: 𝑝 evaluates to R, which maps to 𝑣 with a
surrounding context V in 𝜎 .

The evaluation rules are straightforward: E-Move returns a value by moving it off of the stack 𝜎 ,
replacing it with dead. E-Copy copies the value from the stack. E-Borrow creates a pointer value to
the referent R. Branching is completely standard, hence elided. Assignment, similar to E-Copy and
E-Borrow, uses the place-expression evaluation rules, but instead cares specifically about the value
contextV , rather than the value 𝑣 . Assignment also decomposes the computed referent R to get
its root identifier 𝑥 . Then, it updates the stack by maintaining this value context when it updates 𝑥
(mapping it to V[𝑣]).

Binding and the Stack. Bindings are interesting in that they introduce our two administrative
forms, framed 𝑒 and shift 𝑒 . For instance, in E-Let, we step to shift 𝑒 rather than 𝑒 alone in
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𝜎 ⊢ 𝑝 ⇓ R ↦→ V[𝑣 ] 𝜎 ⊢ 𝑝□ [𝑥 ] ⇓ R ↦→ V[𝑣 ] def
= 𝜎 ⊢ 𝑝□ × 𝑥 ⇓ (R,V, 𝑣) .

𝜎 ⊢ 𝑝□ × R ⇓ (R′,V, 𝑣) read: “R in a context 𝑝□ computes to R′ which maps to 𝑣 in 𝜎 .”

P-Referent
𝜎 ⊢ R ⇓ V × 𝑣

𝜎 ⊢ □ × R ⇓ (R,V, 𝑣)

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ (R2,V, (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛))

𝜎 ⊢ 𝑝□ [□.𝑖 ] × R1 ⇓ (R2 .𝑖,V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛) ], 𝑣𝑖 )

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ (_, ptr 𝜋,)
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ (R2,V, 𝑣)

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R2,V, 𝑣)

Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎′; 𝑒′ )

E-Move
𝜎 ⊢ 𝜋 ⇓ 𝜋 ↦→ _[𝑣 ]

Σ ⊢ (𝜎 ; 𝜋 ) → (𝜎 [𝜋 ↦→ dead]; 𝑣 )

E-Copy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[𝑣 ]

Σ ⊢ (𝜎 ; 𝑝 ) → (𝜎 ; 𝑣 )

E-Borrow
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[_]

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 ) → (𝜎 ; ptr R )

E-Seq

Σ ⊢ (𝜎 ; 𝑣; 𝑒 ) → (𝜎 ; 𝑒 )

E-LetRegion

Σ ⊢ (𝜎 ; letrgn <𝑟> { 𝑣 } ) → (𝜎 ; 𝑣 )

E-Assign
𝜎 ⊢ 𝑝 ⇓ R ↦→ V[_] R = R□ [𝑥 ]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣 ) → (𝜎 [𝑥 ↦→ V [𝑣 ] ]; ( ) )

E-Let

Σ ⊢ (𝜎 ; let 𝑥 : 𝜏si𝑎 = 𝑣; 𝑒 ) → (𝜎 , 𝑥 ↦→ 𝑣; shift 𝑒 )

E-Shift

Σ ⊢ (𝜎 , 𝑥 ↦→ 𝑣′; shift 𝑣 ) → (𝜎 ; 𝑣 )

E-Closure
𝑥𝑓 = free-vars(𝑒) 𝑥𝑛𝑐 = free-nc-vars𝜎 (𝑒) 𝜍𝑐 = 𝜎 | 𝑥𝑓

Σ ⊢ (𝜎 ; |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ) → (𝜎 [𝑥𝑛𝑐 ↦→ dead]; ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩ )

E-AppClosure
𝑣𝑓 = ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩

Σ ⊢ (𝜎 ; 𝑣𝑓 (𝑣1 , . . . , 𝑣𝑛) ) → (𝜎 ♮ 𝜍𝑐 , 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 )

E-Framed

Σ ⊢ (𝜎 ♮ 𝜍 ; framed 𝑣 ) → (𝜎 ; 𝑣 )

E-While

Σ ⊢ (𝜎 ; while 𝑒1 { 𝑒2 } ) → (𝜎 ; if 𝑒1 { 𝑒2; while 𝑒1 { 𝑒2 } } else { ( ) } )

Fig. 9. Selected Place Expression Evaluation Rules (top) and Reduction Rules (bottom)

order to ensure that the binding for 𝑥 is well-scoped and ends when it should (seen in E-Shift). In
E-AppClosure, we similarly step to framed 𝑒 to ensure that after evaluating the body of the closure
we drop the stack frame from that function call (seen in E-Framed). Both E-Shift and E-Framed rely
crucially on the fact that our stack 𝜎 is ordered — they must match the most recent entry.

3.7 Well-typed Oxide programs won’t go wrong!
We prove syntactic type safety for Oxide using progress and preservation [Wright and Felleisen
1992].

Lemma 3.1 (Progress). If Σ; •; Γ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ′ and Σ ⊢ 𝜎 : Γ , then either 𝑒 is a value, 𝑒

is an abort! ( . . . ) , or ∃ 𝜎 ′, 𝑒 ′. Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎 ′; 𝑒 ′ ).

The Progress lemma says that if we can typecheck 𝑒 under a valid global environment Σ, tempo-
rary typing Θ, and stack typing Γ, and we have a stack 𝜎 that satisfies this stack typing Γ, then
either 𝑒 is a value, an abort! expression, or we can take a step. Our stack typing judgment Σ ⊢ 𝜎 : Γ
says that each value in the stack 𝜎 has the corresponding type attributed to it in the typing Γ. The



Oxide: The Essence of Rust 1:21

proof proceeds by induction on the typing derivation for 𝑒 , and relies on a Canonical Forms lemma
and Lemma 3.2 which says that place expressions can be reduced at runtime to values with their
computed types. This lets us apply the rules for moves, copies, borrowing, and assignment.

Lemma 3.2 (Place Expressions Reduce). If Δ; Γ ⊢𝜔 𝑝 : 𝜏xi and Σ ⊢ 𝜎 : Γ, then 𝜎 ⊢ 𝑝 ⇓ R ↦→
V[𝑣] and Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏xi ⇒ Γ.

Our proof of Lemma 3.2 (ifanonymousLemma 5.3Lemma E.4 in appendix) relies on the shared
inductive structure of type computation Δ; Γ ⊢𝜔 𝑝 : 𝜏xi and place expression evaluation 𝜎 ⊢ 𝑝 ⇓
R ↦→ V[𝑣].
Lemma 3.3 (Preservation). If Σ; •; Γ; Θ ⊢ 𝑒 : 𝜏 si1 ⇒ Γ𝑓 and Σ ⊢ 𝜎 : Γ and Σ; Γ ⊢ 𝑣 : Θ

and Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎 ′; 𝑒 ′ ) , then there exists Γ𝑖 such that Σ ⊢ 𝜎 ′ : Γ𝑖 and Σ; Γ𝑖 ⊢ 𝑣 : Θ and

Σ; •; Γ𝑖 ; Θ ⊢ 𝑒 ′ : 𝜏 si2 ⇒ Γ′
𝑓

and •; 𝜏 si2 ; Γ′𝑓 ⊢+ 𝜏 si1 { Γ𝑠 ⊣ and there exists Γ𝑜 such that Γ𝑓 = Γ𝑠 ⋓ Γ𝑜 .

The Preservation lemma says that if 𝑒 has type 𝜏si1 under a valid global environment Σ, temporary
typing Θ, and stack typing Γ, and we have a stack 𝜎 that satisfies Γ and a sequence of values 𝑣
that satisfies the temporary typing Θ, and we know that 𝑒 can take a step under 𝜎 to the new
configuration (𝜎 ′; 𝑒 ′ ), then the following conditions hold. Our updated stack 𝜎 ′ satisfies Γ𝑖 , our
sequence of temporary values 𝑣 continue to satisfy Θ, and our new expression 𝑒 ′ typechecks with
the type 𝜏si2 . In each of these judgments, we use an intermediate stack typing Γ𝑖 that corresponds
to the changes the evaluated portion of code made to the environment. Rather than constrain the
type to be the same as the type of our original 𝑒 , our Preservation lemma allows 𝜏si2 to differ in its
regions by the region rewriting judgment, since evaluation potentially can lead to a type having
more precise regions. Further, the output stack typing from typechecking 𝑒 ′ is threaded through
the rewriting and then ultimately said to union with some other stack typing Γ𝑜 in order to capture
the relationship between the old output environment Γ𝑓 and the new one Γ′

𝑓
when we have taken a

step into one side or the other of a branch.
As discussed in §3.5, the most challenging part of proving preservation is in showing that

the various changes to the environment preserve the well-typedness of values, with closures in
particular posing the greatest issue. Indeed, we believe it’s clear that a formalization of Rust without
closures misses a significant piece of the language’s essence since closures interact consistently with
all parts of the formalism. To that end, the proof of preservation uses several families of lemmas that
follow the same pattern: since our preservation theorem has to maintain the well-typedness of the
stack 𝜎 and temporary values 𝑣 , we must show that various judgments in our system preserve the
well-typedness of values. We will highlight these lemmas here, noting that each require sublemmas
for expressions in closure bodies remaining well-typed which subsequently requires that region
rewriting and ownership safety judgments are preserved by these judgments.

Lemma 3.4 (Values are Well-Typed after Region Rewriting). (Lemma E.13 in appendix)

If Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ and Δ; 𝜏2; Γ ⊢𝜇 𝜏1 { Γ′ ⊣ then Σ; Δ; Γ′; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ′.

Lemma 3.5 (Values are Well-Typed after Drop/GC-Loans). (Lemma E.25)

If Σ; • ⊢ Γ ▷ Γ′ and Σ; •; Γ; • ⊢ 𝑣 : Γ(𝑥) ⇒ Γ, then Σ; •; Γ′; • ⊢ 𝑣 : Γ′(𝑥) ⇒ Γ′.

Lemma 3.6 (Values are Well-Typed under Well-Typed Extensions). (Lemma E.34)

If Σ; •; Γ ⊢ 𝜏 si𝑥 and ∀𝑟 ∈ free-regions(𝜏 si𝑥 ). Γ ⊢ 𝑟 rnrb and Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ, then
Σ; •; Γ , 𝑥 : 𝜏 si𝑥 ; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ , 𝑥 : 𝜏 si𝑥 .

Lemma 3.7 (Values are Well-Typed after Assignment). (Lemma E.40)

If Γ(𝜋𝑎) = 𝜏 sx ∧ Δ; Γ ▷− ∗𝜋𝑎 ; Θ ⊢= 𝜏 si { 𝜏 sx ⊣ Γ′ ∧ •; Γ′; Θ ⊢uniq 𝜋𝑎 ⇒ { uniq𝜋𝑎 } ∧ Σ; •; Γ; Θ ⊢
𝑣 : 𝜏 ⇒ Γ, then Σ; •; gc-loansΘ (Γ′[𝜋𝑎 ↦→ 𝜏 si]); Θ ⊢ 𝑣 : 𝜏 ⇒ gc-loansΘ (Γ′[𝜋𝑎 ↦→ 𝜏 si]).
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passing disqualified
borrowck nll heap out-of-scope library enums statics & consts traits uninitialized variables misc.

89 119 63 40 50 40 93 40 81

Fig. 10. Tested Semantics Results

Lemma 3.8 (Values are Well-Typed under Safe Loan Updates). (Lemma E.62)

If •; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ } and Γ; Θ ⊢ 𝑟 rnic and Γ(𝑟 ) = ∅ and Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ, then

Σ; •; Γ [𝑟 ↦→ { ℓ }]; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ [𝑟 ↦→ { ℓ }].

This pattern of a value typing lemma demanding a whole family of related lemmas is consistent
throughout the supporting lemmas, and they eventually rely on an ownership safety lemma where
we need to actually consider how the various judgments each change the environment and argue
that the separation provided by closures — including for regions — is sufficient to prevent those
changes from breaking ownership safety derivations in the closure bodies themselves. In each case,
the hardest part of proving each family is ensuring that the induction hypothesis for the ownership
safety lemma was rich enough to address the changes effects on the loans in the environment and
the reborrow exclusion list discussed in §3.4.

With Lemma 3.1 and Lemma 3.3 in hand, we also prove a conventional type safety theorem as a
corollary. However, we note that Preservation itself represents a more interesting metatheoretic
result because it requires us to show that all of the type system invariants (namely, the aliasing
requirements) are maintained throughout the execution of well-typed programs.

3.8 Tested Semantics
We set out at the onset to solve a particular problem — there is no high-level specification of the
Rust programming language and its borrowchecker. If there were, this would be the point where
we might present a proof that every expression that typechecks in Oxide also typechecks in Rust
and vice versa. Since doing that is not possible, we follow Guha et al. [2010] in developing a tested
semantics for Oxide. We built an implementation of our Oxide typechecking algorithm, OxideTC,
alongside a compiler, Reducer, from a subset of Rust (with a small number of additional annotations)
to Oxide. In addition to the features described in §3, our implementation supports structs by
treating them as tagged tuples or records. Together, Reducer and OxideTC allowed us to use tests
from the official borrow checker (borrowck) and non-lexical lifetime (nll) test suites to validate
Oxide against Rust’s implementation, rustc. The results of this testing are summarized in Figure 10.
For the 208 passing tests, we can compile the test case into Oxide with Reducer and then use

OxideTC to either successfully typecheck the program or to produce a type error. We compare this
typechecking result to the expected behavior according to the rustc test suite. All 208 tests either
type check when rustc does so, or produce an error corresponding to the error produced by rustc.

The remaining 407 tests were taken out of consideration on the basis of being out-of-scope for this
work. There were 20 categories for exclusion, the majority of which had fewer than 10 applicable
tests. Figure 10 includes the 6 largest categories: (1) heap allocation, (2) out-of-scope libraries,
(3) enumerations, (4) statics and constants, (5) traits, and (6) uninitialized variables. One specialized
category (multithreading) was folded into out-of-scope libraries in this table, with miscellaneous
aggregating the remaining smaller categories: control flow, casting, first-class constructors, compiler
internals dumping, function mutability, inline assembly, macros, slice patterns, two-phase borrows,
uninitialized variables, universal function-call syntax, unsafe, and variable mutability.
Combined, heap allocation and out-of-scope libraries (of which the former is a specialization

of the latter) make up for the largest excluded category with 103 tests, and can be extended in
future work using the strategy outlined by Weiss et al. [2019]. The next largest category, traits,
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accounts for 93 tests. Though the trait system is in some ways novel, the bulk of its design is rooted
in the work on Haskell typeclasses and their extensions. As such, we feel that they are not an
essential part of Rust, though exploring the particularities of their design may be a fruitful avenue
for future work on typeclasses. We are working on extending our implementation with sums to
support enumerations, and they are already present in the formalism. Many of the other categories
describe features (e.g., macros, control flow, casting, statics, and constants) that are well-studied in
the literature, and in which we believe Rust has made relatively standard design choices.

The last issue to discuss involving the tested semantics is the aforementioned annotation burden.
This burden comes directly out of the syntactic differences between Oxide and Rust, and so are
overall rather minor. The most immediately apparent need is to provide a region annotation on
borrow expressions, which we handle using Rust’s compiler annotation support. In our tests, a
borrow expression like &’a uniq x appears as #[lft="a"] &mut x. However, we reduce the
need for this by automatically generating a fresh local region for borrow expressions without an
annotation. This suffices for the majority of expressions without change. Relatedly, one might
also expect to see the introduction of letrgn throughout. To alleviate the need for this, our
implementation automatically binds free region at the beginning of each function body.

The other main change we had to make relates to the use of explicit environment polymorphism
in Oxide. In Rust, every closure has a unique type without a syntax for writing it down. To work
with higher-order functions, these closures implement one of three language-defined traits (Fn,
FnMut, and FnOnce) which can be used as bounds in higher-order functions. We compile the use of
these trait bounds to environment polymorphism in a straight-forward manner (turning instances
of the same Fn-bound polymorphic type into uses of function types with the same environment
variable), but need to introduce a way of writing down which environment to use at instantiation.
We use a compiler annotation (#[envs(c1, ..., cn)]) on applications which says to instantiate
the environment variables with the captured environments of the types of these bindings. If the
bindings are unbound or not at a function type, we produce an error indicating as much.

Aside from these two changes, there are a handful of smaller changes that we made by hand to
simplify implementation of Reducer and OxideTC, though the need for these could be obviated with
more work. Our implementation does not support method call syntax, and so we translate method
definitions (which take self, &self, or &mut self as their first argument) into function definitions
with a named first argument at the method receiver’s type. Relatedly, some of the tests used traits in
a trivial way to definemethods polymorphic in their receiver type. Like other methods, we translated
these into function definitions, but used a polymorphic type for the receiver. rustc also allows for a
number of convenient programming patterns (like borrowing from a constant, e.g. &0) which are not
supported by our implementation. To deal with these cases, we manually introduced temporaries
(a process that rustc does automatically). As a simplification for the typechecker, OxideTC only
reports the first error that occurs in the program. To ensure that we find a correspondence between
all errors, we split up test files with multiple errors into one file per test.

Finally, an earlier version of our implementation required type annotations on all let bindings, and
so currently many tests include fully-annotated types. We later realized our typing judgment is very-
nearly a type synthesis judgment as in bidirectional typechecking, and changed the implementation
to support unannotated bindings by using the type synthesized for the expression being bound. This
works for all expressions except abort! which can produce any type and so requires annotation.

4 RELATEDWORK
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4.1 Semantics for Rust
Early Work. Reed [2015] developed Patina, a formal semantics for an early version of Rust (pre-

1.0) focused on proving memory safety for a language with a syntactic version of borrow checking
and unique pointers. Unfortunately, the design of the language was not yet stable, and the language
overall has drifted from their model. Also, unlike Oxide, Patina made concrete decisions about
memory layout and validity which is problematic as Rust itself has not yet made such commitments.

Benitez [2016] developed Metal, a formal calculus that, by their characterization, has a Rust-like
type system using an algorithmic borrow-checking formulation. Their model relies on capabilities
as in the Capability Calculus of Crary et al. [1999], but manages them indirectly (compared to the
first-class capabilities of Crary et al. [1999] or Morrisett et al. [2007]). Compared to Rust and our
work on Oxide, Metal is unable to deal with the proper LIFO ordering for object destruction and
their algorithmic formulation is less expressive than our declarative formulation.

RustBelt. In the RustBelt project, Jung et al. [2018a] developed a formal semantics called 𝜆𝑅𝑢𝑠𝑡
for a continuation-passing style intermediate language in the Rust compiler known as MIR. They
mechanized this formal semantics in Iris [Jung et al. 2018b] and used it to verify the extrinsic safety
of important Rust standard library abstractions that make extensive use of unsafe code. Their
goal was distinct from ours in that we instead wish to reason about how programs work at the
source-level, and our goals are fortunately complementary. As argued by Weiss et al. [2018], we
can incorporate unsafe code in the standard library by adding primitives to Oxide, and the verified
specifications from RustBelt provide further justification for their safety.

Featherweight Rust. Recent work by Pearce [2021] developed a calculus called FR that, like
us, takes inspiration from the Featherweight Java of Igarashi et al. [2001]. Indeed, they take
this inspiration so seriously that FR is limited solely to let bindings, assignment, moves, and
borrows. Such a simplification misses much of the interesting parts of borrow checking. Without
branching, it is possible to statically maintain total knowledge of pointer provenance for every
reference, trivializing checking for conflicting borrows. Without aggregate data types like tuples
and enumerations, there’s no notions of partial ownership and no need for the infrastructure of
places and place expressions. Further, without closures, there is no ability for computation to be
suspended with ownership effects caught up in it. Dealing with closures correctly was an immense
part of the effort in designing Oxide, and ruled out many simpler borrow checking schemes we
developed along the way. Pearce attempts to address this in their work by describing extensions for
branching, tuples, and top-level functions with very brief arguments as to why the extension would
not break their proofs. However, the answers there are unsatisfying: the argument for branching, for
instance, is roughly that one could individually consider each straightline execution path through
the program as its own program that then has a precise environment in their calculus. Perhaps most
importantly, they limit their attention to modeling Rust with “lexical lifetimes,” a language that has
not actually existed in five years at the time of writing. Like with closures, Oxide required a great
deal of careful design work to appropriately handle the behavior of Rust’s non-lexical lifetimes.

Polonius. Polonius [Matsakis 2018] is a new alias-based implementation of Rust’s borrow checker
that uses information from the Rust compiler as input facts for a logic program that checks the safety
of borrows in a program. Much as we have done with Oxide, Polonius shifts the view of lifetimes to
a model of origins as sets of loans which approximate the possible provenances of a reference. As
described by Matsakis [2018], a reference is no longer valid when any of the constituent loans of
an origin are invalidated. In Oxide, we take an analogous view: a reference type is valid only when
its constituent loans are bound in the stack typing Γ. Though we have not formally explored the
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connection, based on the commonality between both new views on lifetimes, we feel that Oxide
corresponds to a sort of type-systems analogue of Polonius’ constraint solving approach.

4.2 Practical Substructural Programming
As a practical programming language with substructural typing, Rust does not exist in a vacuum.
There have been numerous efforts in the programming languages community to produce languages
that rely on substructurality. Though different in their design from Rust, these languages sit in the
same broader design space, finding a balance between usability and expressivity.
Pottier and Protzenko [2013] developed Mezzo, an ML-family language with a static discipline

of duplicable and affine permissions to control aliasing and ownership. Similar to Rust, Mezzo is
able to have types refer directly to values, rather than always requiring indirection as in work
on ownership types [Clarke et al. 1998; Noble et al. 1998]. However, unlike Rust, Mezzo uses a
permissions system that works as a sort of type-system formulation of separation logic [Reynolds
2002]. By contrast, Rust relies on a borrow checking analysis to ensure that its guarantees about
aliasing and ownership are maintained. In Oxide, we formalized this analysis as the ownership
safety judgment which determines if it is safe to use a place uniquely or sharedly in a given context.
Munch-Maccagnoni [2018] has recently proposed a backwards-compatible model of resource

management for OCaml. Though not yet a part of OCaml, the proposal is promising and aims
to integrate ideas from Rust and C++ (like ownership and so-called “resource acquisition is ini-
tialization” [Stroustrup 1994]) with a garbage-collected runtime system for a functional language.
Munch-Maccagnoni [2018] argues that these efforts can learn from Rust, and we hope that Oxide
provides a strong footing to do so.

Grossman et al. [2002] developed Cyclone as a safe C alternative. To do so, they rely on techniques
from region-basedmemorymanagement [Tofte and Talpin 1994, 1997]. For Cyclone, regions indicate
where an object is located in memory (e.g. on the stack or heap), while in Oxide regions are used
for managing aliasing by abstracting over a reference’s possible origins, regardless of the memory
mode at runtime. Like Oxide, Fluet et al. [2006] developed a formal semantics to demonstrate the
essence of Cyclone.

5 DISCUSSION
Region Reuse in Oxide. Overall, in Oxide, we’ve seen a number of restrictions related to the

concrete region annotations that are added to the source program relative to Rust. This includes
the region-not-reborrowed and region-not-in-closure judgments in rules such as T-Borrow and
T-Let, as well as in the outlives judgment (Figure 6). Overall, these restrictions may seem to
risk limiting our support for Rust’s diverse borrowing patterns, but we’ve found with our im-
plementation that this is not the case. In general, we are able to employ a strategy of always
preferring a new region except when required (to pass multiple distinct references to a polymorphic
function such as fn choose_ref<'a>(&'a uniq u32, &'a uniq u32) -> &'a uniq u32) and
indeed, our Oxide implementation can do virtually all of this work automatically. Polonius [Matsakis
2018; Matsakis and Contributors 2020], a new borrow-checker for rustc discussed in §5, relies on a
similar scheme of generating new origins and constraining them to be equal only when strictly
necessary.

Substructurality in Oxide. Since Rust’s release, the folklore has said that, of course, “Rust is an
affine language.” As such, one might have expected to see the explicit removal of the structural
rule of contraction in a formal calculus. However, with behavior like copyable types and implicit
drops, the substructurality story for Oxide is a bit more complicated. Like an ordered type system,
Oxide does not allow exchange to maintain the ordered end of scopes for bindings, but its rules for
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variable use (moving, copying, and borrowing) all employ judgments that enable out-of-order use
of variables. Like an affine type system, Oxide has a rule T-Drop which resembles a weakening rule
by allowing a program to typecheck with a binding whenever it is possible to typecheck with that
binding dead. Unlike conventional weakening, however, the binding itself must still be present (with
a dead type) because of the ordering requirement! Finally, Oxide even has something resembling
contraction in the form of T-Copy which allows many types to be used multiple times, lowering the
friction of the duplicable of-course types common in the substructural typing literature.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented Oxide as a formal model of the essence of Rust with a novel approach
for reasoning about the behavior of source-level Rust programs with region-based alias manage-

ment. We leveraged syntactic techniques to prove type safety for Oxide (§3.7), and implemented
a prototype typechecker in OCaml along side a compiler from Rust to Oxide which we used to
validate our semantics against a suite of over two-hundred tests from the official rustc test suite.

With Oxide in hand, we believe there is a host of new possibilities for research involving Rust.
For instance, while there are some early efforts to bring formal verification to Rust [Astrauskas et al.
2018; Baranowski et al. 2018; Toman et al. 2015; Ullrich 2016], the possibilities are limited without an
appropriate semantics to work from. As one particular example, the work by Astrauskas et al. [2018]
builds verification support for Rust into Viper [Müller et al. 2016], but uses an ad-hoc subset without
support for shared references. Further, Rust’s memory safety guarantees lend themselves well to
security-critical applications. However, the existing compiler toolchain (leveraging LLVM [Lattner
and Adve 2004]) does not lend itself well to preserving these kinds of guarantees. As such, another
avenue for future work using Oxide would be to build an alternative verified compiler toolchain,
perhaps by compilation to Vellvm [Zhao et al. 2012] or CompCert’s Clight [Blazy and Leroy 2009].
Overall, we hope that Oxide can serve as a rich platform for research with Rust even beyond our
own imaginations.
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A OXIDE SYNTAX

Variables 𝑥 Functions 𝑓 Type Vars. 𝛼 Frame Vars. 𝜑

Concrete Regions 𝑟 Abstract Regions 𝜚 Strings str Naturals 𝑚,𝑛, 𝑘

Path 𝑞 F 𝜖 | 𝑛.𝑞
Places 𝜋 F 𝑥 .𝑞

Place Exprs. 𝑝 F 𝑥 | ∗ 𝑝 | 𝑝.𝑛
Place Expr. Contexts 𝑝□ F □ | ∗ 𝑝□ | 𝑝□ .𝑛

Regions 𝜌 F 𝜚 | 𝑟
Ownership Qualifiers 𝜔 F shrd | uniq
Region Rewriting Modes 𝜇 F + | ⊞ | =

Loans ℓ F 𝜔𝑝

Kinds 𝜅 F ★ | RGN | FRM
Base Types 𝜏b F bool | u32 | unit
Sized Types 𝜏si F 𝜏b | 𝛼 | &𝜌 𝜔 𝜏xi | [𝜏si; 𝑛] | (𝜏si1 , . . . , 𝜏si𝑛 ) | Either<𝜏si1 , 𝜏si2 >

| ∀<𝜑 , 𝜚 , 𝛼>(𝜏si1 , . . . , 𝜏si𝑛 ) Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2
Maybe Unsized Types 𝜏xi F 𝜏si | [𝜏si]
Dead Types 𝜏sd F 𝜏si

† | (𝜏sd1 , . . . , 𝜏sd𝑛 )
Maybe Dead Types 𝜏sx F 𝜏si | 𝜏sd | (𝜏sx1 , . . . , 𝜏sx𝑛 )
Types 𝜏 F 𝜏xi | 𝜏sx

Constants 𝑐 F ( ) | 𝑛 | true | false
Expressions 𝑒 F 𝑐 | 𝑝 | &𝑟 𝜔 𝑝 | &𝑟 𝜔 𝑝 [𝑒] | &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2] | 𝑝 ≔ 𝑒

| letrgn <𝑟> { 𝑒 } | let 𝑥 : 𝜏si = 𝑒1; 𝑒2 | 𝑒1; 𝑒2
| |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } | 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si>(𝑒1 , . . . , 𝑒𝑛)
| if 𝑒1 { 𝑒2 } else { 𝑒3 } | (𝑒1 , . . . , 𝑒𝑛) | [𝑒1 , . . . , 𝑒𝑛]
| 𝑝 [𝑒] | for 𝑥 in 𝑒1 { 𝑒2 } | while 𝑒1 { 𝑒2 } | abort!(str)
| Left::<𝜏si1 , 𝜏si2 >(𝑒) | Right::<𝜏si1 , 𝜏si2 >(𝑒)
| match 𝑒 { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 }

Frame Expressions Φ F 𝜑 | F

Global Environment Σ F • | Σ , 𝜀
Global Entries 𝜀 F fn 𝑓 <𝜑 , 𝜚 , 𝛼>(𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

Type Environment Δ F • | Δ , 𝛼 : ★ | Δ , 𝜚 : RGN | Δ , 𝜑 : FRM | Δ , 𝜚 :> 𝜚 ′

Frame Typing F F • | F , 𝑥 : 𝜏sx | F , 𝑟 ↦→ { ℓ }
Stack Typing Γ F • | Γ ♮ F
Continuation Typing Θ F • | Θ , 𝜏si

B STATICS
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B.1 Well-Formedness Judgments

⊢ Σ

read: “Σ is well-formed”

WF-GlobalEnv
∀𝜀 ∈ Σ. Σ ⊢ 𝜀

⊢ Σ

Σ ⊢ 𝜀
read: “𝜀 is a well-formed function definition in Σ”

WF-FunctionDefinition
Δ = 𝜑 : FRM , 𝜚 : RGN , 𝜚1 :> 𝜚2 , 𝛼 :★ { 𝜚1 } ⊆ { 𝜚 } { 𝜚2 } ⊆ { 𝜚 }

Σ; Δ; • ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; • ⊢ 𝑒 : 𝜏si
𝑓
⇒ Γ′ Δ; •; Θ ⊢𝜇 𝜏si

𝑓
{ 𝜏si𝑟 ⊣ •

Σ ⊢ fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

⊢ Δ

read: “Δ is well-formed”

WF-TVarEmpty

⊢ •

WF-TVarExtendEnv

⊢ Δ , 𝜑 : FRM

WF-TVarExtendRegion

⊢ Δ , 𝜚 : RGN

WF-TVarExtendType

⊢ Δ , 𝛼 :★

WF-TVarExtendOutlives
𝜚1 : RGN ∈ Δ 𝜚2 : RGN ∈ Δ

⊢ Δ , 𝜚1 :> 𝜚2

Σ; Δ ⊢ Γ

read: “Γ is well-formed under Σ and Δ”

WF-EmptyStackTyping

Σ; Δ ⊢ •

WF-StackTyping
Σ; Δ ⊢ Γ places(F) ⊆ dom(Γ ♮ F)

dom(F) # dom(Γ) ∀𝑥 : 𝜏 ∈ F. Σ; Δ; Γ ♮ F ⊢ 𝜏
∀𝜏 ∈ cod(F) . ∀𝑟 ∈ free-regions(𝜏) . ∀𝜏′ ∈ dom(Γ) . 𝑟 does not occur outside of a closure in 𝜏′

∀𝑟 ↦→ { ℓ } ∈ F. ∀𝜔𝑝 ∈ { ℓ }. ∃𝜏xi . Δ; Γ ♮ F ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ ⊢ Γ ♮ F
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Σ; Δ; Γ ⊢ Θ
read: “Θ is well-formed under Σ, Δ, and Γ”

WF-EmptyTemporaryTyping

Σ; Δ; Γ ⊢ •

WF-TemporaryTyping
Σ; Δ; Γ ⊢ Θ Σ; Δ; Γ ⊢ 𝜏

∀𝑟 ∈ free-regions(𝜏si) . �𝜏si
𝑏

∈ cod(Γ) . 𝑟 ∈ free-regions(𝜏si
𝑏
) ∧ Γ (𝑟 ) = ∅

Σ; Δ; Γ ⊢ Θ , 𝜏si

⊢ Σ; Δ; Γ; Θ
read: “Σ, Δ, and Γ are well-formed.”

WF-Environments
⊢ Σ ⊢ Δ Σ; Δ ⊢ Γ Σ; Δ; Γ ⊢ Θ

⊢ Σ; Δ; Γ; Θ

Σ; Δ; Γ ⊢ Φ
read: “Φ is a well-formed captured environment”

WF-EnvVar
Δ(𝜑) = FRM

Σ; Δ; Γ ⊢ 𝜑

WF-Env
Σ; Δ ⊢ Γ ♮ F𝑐
Σ; Δ; Γ ⊢ F𝑐

Δ; Γ ⊢ 𝜌

read: “𝜌 is a well-formed region”

WF-ConcreteRegion
𝑟 ∈ dom(Γ)
Δ; Γ ⊢ 𝑟

WF-AbstractRegion
Δ(𝜚 ) = RGN

Δ; Γ ⊢ 𝜚

Σ; Δ; Γ ⊢ 𝜏
read: “𝜏 is a well-formed type under Σ, Δ, and Γ”

WF-BaseType

Σ; Δ; Γ ⊢ 𝜏b

WF-TVar
Δ(𝛼) = ★

Σ; Δ; Γ ⊢ 𝛼

WF-Ref
Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏xi

Σ; Δ; Γ ⊢ &𝜌 𝜔 𝜏xi

WF-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ ⊢ 𝜏sx𝑖

Σ; Δ; Γ ⊢ (𝜏sx1 , . . . , 𝜏sx𝑛 )

WF-Function
∀𝑟 ∈ free-regions(𝜏si𝑟 ) . ∀𝜏′ ∈ dom(Γ) . 𝑟 does not occur outside of a closure in 𝜏′

Σ; Δ; Γ ⊢ Φ Σ; Δ , 𝜑 : FRM , 𝜚 : RGN , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ ⊢ 𝜏si𝑟
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ , 𝜑 : FRM , 𝜚 : RGN , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ ⊢ 𝜏si𝑖

Σ; Δ; Γ ⊢ ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2

WF-Uninit

Σ; Δ; Γ ⊢ 𝜏si†

WF-Array
Σ; Δ; Γ ⊢ 𝜏si

Σ; Δ; Γ ⊢ [𝜏si; 𝑛]

WF-Slice
Σ; Δ; Γ ⊢ 𝜏si

Σ; Δ; Γ ⊢ [𝜏si ]
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B.2 Region Rewriting & Outlives Relations

Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′

read: “terms at the type 𝜏1 under Δ and Γ can be rewritten according to 𝜇 as type 𝜏2 under Γ′”

RR-Refl

Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏1 ⊣ Γ

RR-Trans
Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ Δ; Γ′; Θ ⊢𝜇 𝜏2 { 𝜏3 ⊣ Γ′′

Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏3 ⊣ Γ′′

RR-Array
Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′

Δ; Γ; Θ ⊢𝜇 [𝜏1; 𝑛] { [𝜏2; 𝑛] ⊣ Γ′

RR-Slice
Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′

Δ; Γ; Θ ⊢𝜇 [𝜏1 ] { [𝜏2 ] ⊣ Γ′

RR-Reference
Δ; Γ; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣ Γ′ Δ; Γ′; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′′

Δ; Γ; Θ ⊢𝜇 &𝜌1 𝜔 𝜏1 { &𝜌2 𝜔 𝜏2 ⊣ Γ′′

RR-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ𝑛−1; Θ ⊢𝜇 𝜏𝑖 { 𝜏′𝑖 ⊣ Γ𝑖

Δ; Γ; Θ ⊢𝜇 (𝜏1 . . . 𝜏𝑛) { (𝜏′1 . . . 𝜏′𝑛) ⊣ Γ𝑛

RR-Dead
Δ; Γ; Θ ⊢𝜇 𝜏si1 { 𝜏si2 ⊣ Γ′

Δ; Γ; Θ ⊢𝜇 𝜏si1 { 𝜏si
†

2 ⊣ Γ

Δ; Γ; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣ Γ′

read: “𝜌1 outlives 𝜌2 under Δ and Γ, and can be rewritten according to 𝜇 under the environment Γ′”

OL-Refl

Δ; Γ; Θ ⊢𝜇 𝜌 :> 𝜌 ⊣ Γ

OL-BothAbstract
𝜚1 : RGN ∈ Δ 𝜚2 : RGN ∈ Δ 𝜚1 :> 𝜚2 ∈ Δ

Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚2 ⊣ Γ

OL-Trans
Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚2 ⊣ Γ′

Δ; Γ′; Θ ⊢𝜇 𝜚2 :> 𝜚3 ⊣ Γ′′

Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚3 ⊣ Γ′′

OL-CombineConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb Γ; Θ ⊢ { 𝑟1 , 𝑟2 } clrs
𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)

Δ; Γ; Θ ⊢+ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

OL-CombineConcreteUnrestricted
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb

𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)
Δ; Γ; Θ ⊢⊞ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

OL-CheckConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb
𝑟1 occurs before 𝑟2 in Γ

Δ; Γ; Θ ⊢= 𝑟1 :> 𝑟2 ⊣ Γ

OL-AbstractConcrete
𝜚 : RGN ∈ Δ 𝑟 ∈ dom(Γ)

Δ; Γ; Θ ⊢𝜇 𝜚 :> 𝑟 ⊣ Γ

OL-ConcreteAbstract
Γ1,0 (𝑟 ) = { 𝜔𝑝

𝑛 } ≠ ∅ ∀𝑖 ∈ { 1 . . . 𝑛 }. �𝜋. 𝑝𝑖 = 𝜋 ∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ0 ⊢shrd 𝑝𝑖 : _, 𝜌𝑖𝑚𝑖

𝜚 : RGN ∈ Δ ∀𝑖 ∈ { 1 . . . 𝑛 }.∀𝑗 ∈ { 1 . . . 𝑚𝑖 }. Δ; Γ𝑖,𝑗−1; Θ ⊢𝜇 𝜌𝑖,𝑗 :> 𝜚 ⊣ Γ𝑖,𝑗

Δ; Γ1,0; Θ ⊢𝜇 𝑟 :> 𝜚 ⊣ Γ𝑛,𝑚𝑛

Δ; Γ; Θ ⊢ 𝜌1 :> 𝜌2 ⊣ Γ′

OL-Bounds
∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ𝑖−1; Θ ⊢𝜇 𝜌𝑖 :> 𝜌′𝑖 ⊣ Γ𝑖

Δ; Γ0; Θ ⊢ 𝜌 :> 𝜌′ ⊣ Γ𝑛



Oxide: The Essence of Rust 1:33

B.3 Ownership Safety

Δ; Γ; Θ ⊢𝜋𝜔 𝑝 ⇒ { 𝜔𝑝′ } where Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { 𝜔𝑝′ } means Δ; Γ; Θ ⊢•𝜔 𝑝 ⇒ { 𝜔𝑝 }.
read: “𝑝 is 𝜔-safe under Δ and Γ, with reborrow exclusion list 𝜋 , and may point to any of the loans in 𝜔𝑝 ”

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }
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B.4 Typing

Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′ where ⊢ Σ; Δ; Γ; Θ and Σ; Δ; Γ′ ⊢ 𝜏
read: “𝑒 has type 𝜏 under Σ, Δ, and Γ, producing output context Γ”

T-Move
Δ; Γ; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋 ) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
† ]

T-Copy
Δ; Γ; Θ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ ⊢shrd 𝑝 : 𝜏si copyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝑝 : 𝜏si ⇒ Γ

T-Borrow
Γ (𝑟 ) = ∅ Γ; Θ ⊢ 𝑟 rnic

Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

T-BorrowIndex
Σ; Δ; Γ; Θ ⊢ 𝑒 : u32 ⇒ Γ′ Γ′ (𝑟 ) = ∅ Γ′; Θ ⊢ 𝑟 rnic

Δ; Γ′; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi

𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si ]

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 [𝑒 ] : &𝑟 𝜔 𝜏si ⇒ Γ′ [𝑟 ↦→ { ℓ }]

T-BorrowSlice
Σ; Δ; Γ; Θ ⊢ 𝑒1 : u32 ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : u32 ⇒ Γ2

Γ2 (𝑟 ) = ∅ Γ2; Θ ⊢ 𝑟 rnic Δ; Γ2; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ2 ⊢𝜔 𝑝 : [𝜏si ]

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2 ] : &𝑟 𝜔 [𝜏si ] ⇒ Γ2 [𝑟 ↦→ { ℓ }]

T-IndexCopy
Σ; Δ; Γ; Θ ⊢ 𝑒 : u32 ⇒ Γ′ Δ; Γ′; Θ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ′ ⊢shrd 𝑝 : 𝜏xi 𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si ] copyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝑝 [𝑒 ] : 𝜏si ⇒ Γ′

T-Seq
Σ; Δ; Γ; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1

Σ; Δ; gc-loansΘ (Γ1) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ; Θ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

T-Branch
Σ; Δ; Γ; Θ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ1; Θ ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Δ; Γ3; Θ ⊢+ 𝜏si3 { 𝜏si ⊣ Γ′3 Γ′2 ⋓ Γ′3 = Γ′

Σ; Δ; Γ; Θ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ′

T-Let
Σ; Δ; Γ; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Δ; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si𝑎 ⊣ Γ′1

∀𝑟 ∈ free-regions(𝜏si𝑎 ) . Γ′1 ⊢ 𝑟 rnrb Σ; Δ; gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

T-LetRegion
Σ; Δ; Γ , 𝑟 ↦→ {}; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ }

Σ; Δ; Γ; Θ ⊢ letrgn <𝑟> { 𝑒 } : 𝜏si ⇒ Γ′

T-AssignDeref
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si𝑛 ⇒ Γ1 Δ; Γ1 ⊢uniq 𝑝 : 𝜏si𝑜

Δ; Γ1; Θ ⊢+ 𝜏si𝑛 { 𝜏si𝑜 ⊣ Γ′ Δ; Γ′; Θ ⊢uniq 𝑝 ⇒ { ℓ }
Σ; Δ; Γ; Θ ⊢ 𝑝 ≔ 𝑒 : unit ⇒ Γ′

T-Assign
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ1 Γ1 (𝜋 ) = 𝜏sx 𝜏sx = &𝑟 𝜔 𝜏xi =⇒ 𝑟 is unique to 𝜋 in Γ1

Δ; Γ1 ▷− ∗𝜋 ; Θ ⊢= 𝜏si { 𝜏sx ⊣ Γ′ (𝜏sx = 𝜏sd ∨ Δ; Γ′; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 })
Σ; Δ; Γ; Θ ⊢ 𝜋 ≔ 𝑒 : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si ]
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T-While
Σ; Δ; Γ; Θ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ2; Θ ⊢ 𝑒1 : bool ⇒ Γ2 Σ; Δ; Γ2; Θ ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ; Θ ⊢ while 𝑒1 { 𝑒2 } : unit ⇒ Γ2

T-ForArray
Σ; Δ; Γ; Θ ⊢ 𝑒1 : [𝜏si; 𝑛] ⇒ Γ1 ∀𝑟 ∈ free-regions(𝜏si) . Γ1 ⊢ 𝑟 rnrb

Σ; Δ; Γ1 , 𝑥 : 𝜏si; Θ ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ1

T-ForSlice
Σ; Δ; Γ; Θ ⊢ 𝑒1 : &𝜌 𝜔 [𝜏si ] ⇒ Γ1 ∀𝑟 ∈ free-regions(&𝜌 𝜔 𝜏si) . Γ1 ⊢ 𝑟 rnrb

Σ; Δ; Γ1 , 𝑥 : &𝜌 𝜔 𝜏si; Θ ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sx1

Σ; Δ; Γ; Θ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ2

T-Function
Σ(𝑓 ) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

Σ; Δ; Γ; Θ ⊢ 𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) → 𝜏si𝑟 where 𝜚1 : 𝜚2 ⇒ Γ

T-Closure
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 free-nc-varsΓ (𝑒) \ 𝑥 = 𝑥𝑛𝑐

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 )))

F𝑐 = 𝑟 ↦→ Γ (𝑟 ) , 𝑥𝑓 : Γ (𝑥𝑓 ) ∀𝑟𝑝 ∈
𝑛⋃
𝑖=1

free-regions(𝜏si𝑖 ) ∪ free-regions(𝜏si𝑟 ) . Γ (𝑟𝑝 ) = ∅

Σ; Δ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐 )† ] ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ′

T-AppFunction
Σ; Δ; Γ ⊢ Φ Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏si 𝛿 = · [Φ/𝜑 ] [𝜌/𝜚 ] [𝜏si/𝛼 ]
Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) → 𝜏si

𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝛿 (𝜏si1 ) . . . 𝛿 (𝜏si𝑖−1) ⊢ 𝑒𝑖 : 𝛿 (𝜏si𝑖 ) ⇒ Γ𝑖

∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ′𝑛 ⊢ 𝑟 rnrb Δ; Γ𝑛 ; Θ ⊢ 𝜚2 [𝜌/𝜚 ] :> 𝜚1 [𝜌/𝜚 ] ⊣ Γ𝑏

Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝛿 (𝜏si
𝑓
) ⇒ Γ𝑏

T-AppClosure
Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 : ∀<> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ𝑐→ 𝜏si

𝑓
⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 . . . 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si
𝑖′ ⇒ Γ𝑖 Δ; Γ𝑖 ; Θ ⊢⊞ 𝜏si

𝑖′ { 𝜏si𝑖 ⊣ Γ′𝑖
∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ′𝑛 ⊢ 𝑟 rnrb

Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
⇒ Γ′𝑛

T-Abort

Σ; Δ; Γ; Θ ⊢ abort!(str) : 𝜏sx ⇒ Γ

T-Unit

Σ; Δ; Γ; Θ ⊢ ( ) : unit ⇒ Γ

T-u32

Σ; Δ; Γ; Θ ⊢ 𝑛 : u32 ⇒ Γ

T-True

Σ; Δ; Γ; Θ ⊢ true : bool ⇒ Γ

T-False

Σ; Δ; Γ; Θ ⊢ false : bool ⇒ Γ

T-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ0; Θ ⊢ (𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛 ) ⇒ Γ𝑛
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T-Array
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ; Θ ⊢ [𝑒1 , . . . , 𝑒𝑛 ] : [𝜏si; 𝑛] ⇒ Γ𝑛

T-Slice
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ; Θ ⊢ ⟦𝑒1 , . . . , 𝑒𝑛⟧ : [𝜏si ] ⇒ Γ𝑛

T-Drop
Γ (𝜋 ) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

T-Left
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si1 ⇒ Γ′

Σ; Δ; Γ; Θ ⊢ Left::<𝜏si1 , 𝜏si2 > (𝑒) : Either<𝜏si1 , 𝜏si2 > ⇒ Γ′

T-Right
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si2 ⇒ Γ′

Σ; Δ; Γ; Θ ⊢ Right::<𝜏si1 , 𝜏si2 > (𝑒) : Either<𝜏si1 , 𝜏si2 > ⇒ Γ′

T-Match
Σ; Δ; Γ; Θ ⊢ 𝑒 : Either<𝜏si

𝑙
, 𝜏si𝑟 > ⇒ Γ′ ∀𝑟 ∈ free-regions(Either<𝜏si

𝑙
, 𝜏si𝑟 >) . Γ′ ⊢ 𝑟 rnrb

Σ; Δ; Γ′ , 𝑥1 : 𝜏si
𝑙
; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 , 𝑥1 : 𝜏sd

𝑙

Σ; Δ; Γ′ , 𝑥2 : 𝜏si𝑟 ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥2 : 𝜏sd𝑟 𝜏si = 𝜏si1 ∨ 𝜏si = 𝜏si2
Δ; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si ⊣ Γ′1 Δ; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Γ′1 ⋓ Γ′2 = Γ′

Σ; Δ; Γ; Θ ⊢ match 𝑒 { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } : 𝜏si ⇒ Γ′

B.5 Additional Judgments

𝜔 ≲ 𝜔′

read: “𝜔 is less than 𝜔′ in the qualifier ordering”

QO-Refl

𝜔 ≲ 𝜔

QO-ShrdUniq

shrd ≲ uniq

Σ; Δ ⊢ Γ ▷ Γ′

read: “Γ is related to Γ′ under Σ and Δ”

R-Env
⊢ Σ; Δ; Γ; • ⊢ Σ; Δ; Γ′; • dom(Γ) = dom(Γ′)

∀𝑥 : 𝜏 ∈ Γ′. ∀𝑟 that occurs in 𝜏 . Γ (𝑟 ) = Γ′ (𝑟 )
∀𝑟 ∈ dom(Γ) . Γ (𝑟 ) = Γ′ (𝑟 ) ∨ Γ′ (𝑟 ) = ∅

∀𝜋 ∈ dom(explode(Γ)) . Γ′ (𝜋 ) = Γ (𝜋 ) ∨ Γ′ (𝜋 ) = Γ (𝜋 )†

Σ; Δ ⊢ Γ ▷ Γ′
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Δ; Γ ⊢𝜔 𝑝 : 𝜏, { 𝜌 }
read: “𝑝 in an 𝜔 context has type 𝜏 under Δ and Γ, passing through the regions in 𝜌”

TC-Var
Γ (𝑥) = 𝜏si

Δ; Γ ⊢𝜔 𝑥 : 𝜏si, ∅

TC-Proj
Δ; Γ ⊢𝜔 𝑝 : (𝜏si1 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛 ), { 𝜌𝑝 }

Δ; Γ ⊢𝜔 𝑝.𝑖 : 𝜏si𝑖 , { 𝜌𝑝 }

TC-Deref
Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔′ 𝜏xi, { 𝜌𝑝 } 𝜔 ≲ 𝜔′

Δ; Γ ⊢𝜔 ∗𝑝 : 𝜏xi, { 𝜌𝑝 , 𝜌 }

Δ; Γ ⊢𝜔 𝑝 : 𝜏
read: “𝑝 in an 𝜔 context has type 𝜏 under Δ and Γ”

Δ; Γ ⊢𝜔 𝑝 : 𝜏 = Δ; Γ ⊢𝜔 𝑝 : 𝜏, _

Σ; Γ ⊢ 𝑣 : Θ
read: “the given values 𝑣 satisfy Θ under Σ and Γ”

WF-Temporaries
∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑣𝑖 : 𝜏si𝑖 ⇒ Γ

Σ; Γ ⊢ 𝑣1 , . . . , 𝑣𝑛 : 𝜏si1 , . . . , 𝜏si𝑛

Γ ⊢ 𝑟 rnrb

read: “the region 𝑟 is not reborrowed in Γ”

NRB-Region
∀𝜋 : &𝑟 𝜔 𝜏xi ∈ explode(Γ) . �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ (𝑟 ′)

Γ ⊢ 𝑟 rnrb

Γ; Θ ⊢ { 𝑟 } clrs
read: “the regions 𝑟 follow the closure restriction in Θ or Γ”

CLS-Restriction
∀𝜏 ∈ cod(Γ) ∪ Θ. ∀<_> (𝜏si1 , . . . , 𝜏si𝑛 ) → 𝜏si𝑟 occurs in 𝜏 =⇒

({ 𝑟 } ⊆
𝑛⋃
𝑖=1

free-regions(𝜏si𝑖 ) ∪ free-regions(𝜏si𝑟 ) ∨ ( { 𝑟 } ∩
𝑛⋃
𝑖=1

free-regions(𝜏si𝑖 ) ∪ free-regions(𝜏si𝑟 )) = ∅)

Γ; Θ ⊢ { 𝑟 } clrs

Γ; Θ ⊢ 𝑟 rnic

read: “the region 𝑟 is not in a closure’s signature in Θ or Γ”

CLS-RegionNotIn

∀𝜏 ∈ cod(Γ) ∪ Θ. ∀<_> (𝜏si1 , . . . , 𝜏si𝑛 ) → 𝜏si𝑟 occurs in 𝜏 =⇒ 𝑟 ∉

𝑛⋃
𝑖=1

free-regions(𝜏si𝑖 ) ∪ free-regions(𝜏si𝑟 )

Γ; Θ ⊢ 𝑟 rnic

C METAFUNCTIONS
free-nc-vars𝜎 (𝑒) = all the variables 𝑥 free in 𝑒 which are bound to values in 𝜎 that are non-copyable.
free-nc-varsΓ (𝑒) = all the variables 𝑥 free in 𝑒 which are bound to types in Γ that are non-copyable.
𝜋1 #𝜋2 = 𝜋1 is not a prefix of 𝜋2 and 𝜋2 is not a prefix of 𝜋1 and 𝜋1 ≠ 𝜋2.
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𝑝1 #𝑝2 = 𝑝1 = 𝑝□1 [𝜋1 ] and 𝑝2 = 𝑝□2 [𝜋2 ] and 𝜋1 #𝜋2.

Γ1 ⋓ Γ2

(Γ1 ♮ F1) ⋓ (Γ2 ♮ F2) = (Γ1 ⋓ Γ2) ♮ (F1 ⋓ F2)
• ⋓ • = •
F1 ⋓ F2

(F1, 𝑥 : 𝜏) ⋓ (F2, 𝑥 : 𝜏) = (F1 ⋓ F2), 𝑥 : 𝜏
(F1, 𝑟 ↦→ { ℓ }) ⋓ (F2, 𝑟 ↦→ { ℓ′ }) = (F1 ⋓ F2), 𝑟 ↦→ { ℓ, ℓ′ }
• ⋓ • = •

places(Γ) = { 𝜋 }

places (•) = ∅
places (Γ , 𝑟 ↦→ { 𝜔𝑝 }) = { 𝜋 | 𝜔𝑖𝑝𝑖 ∈ { 𝜔𝑝 } ∧ (𝑝𝑖 = 𝜋 ∨ 𝑝𝑖 = 𝑝□ [∗𝜋 ]) } ∪ places Γ

places (Γ , 𝑥 : 𝜏) = places (Γ ♮ •) = places (Γ)

𝑣.𝑞⇝ C ⊞ 𝑣

DV-End

𝑣.𝜖 ⇝ □⊞ 𝑣

DV-Projection
𝑣𝑖 .𝑞⇝ C ⊞ 𝑣

(𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛) .𝑖 .𝑞⇝ (𝑣0 , . . . , C , . . . , 𝑣𝑛) ⊞ 𝑣

𝜎 [𝜋 ↦→ 𝑣 ]

𝜎 [𝑥.𝑞 ↦→ 𝑣 ] = 𝜎 [𝑥 ↦→ C[𝑣 ] ]
where 𝜎 (𝑥) .𝑞⇝ C ⊞ _

𝜎 (𝜋 )

𝜎 (𝑥.𝑞) = 𝑣

where 𝜎 (𝑥) .𝑞⇝ _ ⊞ 𝑣

𝜏 .𝑞⇝ 𝜏□ ⊞ 𝜏

D-End

𝜏 .𝜖 ⇝ □⊞ 𝜏

D-Projection
𝜏𝑖 .𝑞⇝ 𝜏□ ⊞ 𝜏

(𝜏0 , . . . , 𝜏𝑖 , . . . , 𝜏𝑛) .𝑖 .𝑞⇝ (𝜏0 , . . . , 𝜏□ , . . . , 𝜏𝑛) ⊞ 𝜏

Γ [𝜋 ↦→ 𝜏 ]

Γ [𝑥.𝑞 ↦→ 𝜏 ] = Γ [𝑥 ↦→ 𝜏□ [𝜏 ] ]
where Γ (𝑥) .𝑞⇝ 𝜏□ ⊞ _
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Γ (𝜋 )

Γ (𝑥.𝑞) = 𝜏

where Γ (𝑥) .𝑞⇝ _ ⊞ 𝜏

noncopyableΣ 𝜏

noncopyable Σ 𝜏
b = ⊥

noncopyable Σ 𝛼 = ⊤
noncopyable Σ &_ uniq _ = ⊤
noncopyable Σ &_ shrd _ = ⊥

noncopyable Σ ∀<_> (_) _→ _ = ⊥
noncopyable Σ [𝜏 ; _] = noncopyable Σ 𝜏

noncopyable Σ [𝜏 ] = noncopyable Σ 𝜏

noncopyable Σ (𝜏, . . .) = noncopyable Σ 𝜏 ∨ . . .

copyableΣ 𝜏

copyable Σ 𝜏 = ¬ noncopyable Σ 𝜏

explode(Γ)

explode(Γ) = ∪
𝑥 : 𝜏 ∈ Γ

explode(𝑥 : 𝜏)

explode(𝜋 : 𝜏)

explode 𝜋 : 𝜏b = { 𝜋 : 𝜏b }
explode 𝜋 : 𝛼 = { 𝜋 : 𝛼 }

explode 𝜋 : &𝜌 𝜔 𝜏xi = { 𝜋 : &𝜌 𝜔 𝜏xi }
explode 𝜋 : [𝜏si; 𝑛] = { 𝜋 : [𝜏si; 𝑛] }

explode 𝜋 : (𝜏sx1 . . . 𝜏sx𝑛 ) = ∪
𝑖 ∈ 1 ... 𝑛

explode(𝜋.𝑖 : 𝜏sx𝑖 )

explode 𝜋 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2 = { 𝜋 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ→ 𝜏si𝑟 where 𝜚1 : 𝜚2 }

explode 𝜋 : 𝜏si
†
= { 𝜋 : 𝜏si

† }

𝑟1 occurs before 𝑟2 in Γ

OC-OccursBase
𝑟1 ∈ dom(Γ)

𝑟1 occurs before 𝑟2 in Γ , 𝑟2 ↦→ { ℓ }

OC-OccursExtendFrame
𝑟1 occurs before 𝑟2 in Γ

𝑟1 occurs before 𝑟2 in Γ, F′

OC-OccursNewFrame
𝑟1 occurs before 𝑟2 in Γ

𝑟1 occurs before 𝑟2 in Γ ♮ F

gc-loansΘ (Γ)

gc-loansΘ (Γ) = Γ [𝑟 ↦→ ∅]
where 𝑟 = { 𝑟 ∈ dom(Γ) | ∀𝜏 ∈ cod(Θ) ∪ cod(Γ) . 𝑟 does not occur in 𝜏 }

𝑟 is unique to 𝜋 in Γ

𝑟 is unique to 𝜋 in Γ = ∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏xi2 ∈ explode(Γ) . 𝜋 = 𝜋 ′ ∨ 𝑟 ≠ 𝑟 ′

Γ ▷− 𝑝

Γ ▷− 𝑝 = Γ′ where dom(Γ) = dom(Γ′) and
∀𝑟 . Γ′ (𝑟 ) = { 𝜔𝑝′ ∈ Γ (𝑟 ) | 𝑝′ ≠ 𝑝□ [𝑝 ] } and
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∀𝜋. Γ (𝜋 ) = Γ′ (𝜋 )

Γ ▷− { 𝑝 }

Γ ▷− { 𝑝 , 𝑝 } = (Γ ▷− 𝑝) ▷− { 𝑝 }
Γ ▷− ∅ = Γ

regions(Γ, Θ) = { 𝑟 ↦→ { ℓ } }

regions(Γ, Θ) = { 𝑟 ↦→ { ℓ } ∈ Γ } ∪ { 𝑟 ↦→ { ℓ } ∈ F𝑐 | ∃𝜏xi ∈ Γ ∨ ∃𝜏xi ∈ Θ. (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 occurs in 𝜏xi }

D DYNAMICS

Referent R F 𝑥 | R .𝑛 | R [𝑛] | R [𝑛1 ..𝑛2 ]
Referent Context R□ F □ | R□ .𝑛 | R□ [𝑛] | R□ [𝑛1 ..𝑛2 ]
Expressions 𝑒 F . . . | framed 𝑒 | shift 𝑒 | ⟦𝑣1 , . . . , 𝑣𝑛⟧ | dead | ptr R

| ⟨𝜍 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩

Values 𝑣 F 𝑐 | (𝑣1 , . . . , 𝑣𝑛) | [𝑣1 , . . . , 𝑣𝑛 ] | ⟦𝑣1 , . . . , 𝑣𝑛⟧ | 𝑓 | dead | ptr R
| ⟨𝜍 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩

Eval. Contexts C F □
| &𝜌 𝜔 𝑝 [C] | &𝜌 𝜔 𝑝 [C..𝑒 ] | &𝜌 𝜔 𝑝 [𝑣..C]
| let 𝑥 : 𝜏si = C; 𝑒 | letrgn <𝑟> { C }
| 𝑝 ≔ C | C; 𝑒 | framed C
| shift C | shiftprov C
| C::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛)
| 𝑣::<Φ , 𝜌 , 𝜏si> (𝑣1 , . . . , 𝑣𝑚 , C , 𝑒1 , . . . , 𝑒𝑛)
| 𝑝 [C] | if C { 𝑒1 } else { 𝑒2 }
| for 𝑥 in C { 𝑒 }
| (𝑣1 , . . . , 𝑣𝑚 , C , 𝑒1 , . . . , 𝑒𝑛)
| [𝑣1 , . . . , 𝑣𝑚 , C , 𝑒1 , . . . , 𝑒𝑛 ]
| Left::<𝜏si1 , 𝜏si2 > (C) | Right::<𝜏si1 , 𝜏si2 > (C)
| match C { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 }

Value Contexts V F □ | (𝑣1 , . . . , V , . . . , 𝑣𝑛) | [𝑣1 , . . . , V1 , . . . , V𝑚 , . . . , 𝑣𝑛 ]
Stacks 𝜎 F • | 𝜎 ♮ 𝜍

Stack Frame 𝜍 F • | 𝜍 , 𝑥 ↦→ 𝑣

Σ; Γ ⊢ R : 𝜏xi

WF-RefId
Γ (𝑥) = 𝜏si

Σ; Γ ⊢ 𝑥 : 𝜏si

WF-RefProjection
Σ; Γ ⊢ R : (𝜏si0 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛 )

Σ; Γ ⊢ R .𝑖 : 𝜏si𝑖

WF-RefIndexArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 < 𝑛

Σ; Γ ⊢ R [𝑖 ] : 𝜏si

WF-RefIndexSlice
Σ; Γ ⊢ R : [𝜏si ]
Σ; Γ ⊢ R [𝑖 ] : 𝜏si

WF-RefSliceArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 ≤ 𝑗 < 𝑛

Σ; Γ ⊢ R [𝑖 .. 𝑗 ] : [𝜏si ]

WF-RefSliceSlice
Σ; Γ ⊢ R : [𝜏si ] 𝑖 ≤ 𝑗

Σ; Γ ⊢ R [𝑖 .. 𝑗 ] : [𝜏si ]
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𝜎 ⊢ R ⇓ V × 𝑣

ER-Id
𝜎 (𝑥) = 𝑣

𝜎 ⊢ 𝑥 ⇓ □ × 𝑣

ER-Projection
𝜎 ⊢ R ⇓ V × (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ R .𝑖 ⇓ V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛) ] × 𝑣𝑖

ER-IndexArray
𝜎 ⊢ R ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛 ]

𝜎 ⊢ R [𝑖 ] ⇓ V [[𝑣0 , . . . , □ , . . . , 𝑣𝑛 ] ] × 𝑣𝑖

ER-IndexSlice
𝜎 ⊢ R ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑘 , . . . , 𝑣𝑛⟧

𝜎 ⊢ R [𝑘 ] ⇓ V [𝑣0 ] . . . [□] . . . [𝑣𝑛 ] × 𝑣𝑖+𝑘

ER-SliceArray
𝜎 ⊢ R ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛 ]

𝜎 ⊢ R [𝑖 .. 𝑗 ] ⇓ V [[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛 ] ] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

ER-SliceSlice
𝜎 ⊢ R ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧

𝜎 ⊢ R [𝑖 .. 𝑗 ] ⇓ V [𝑣0 ] . . . [□] . . . [□] . . . [𝑣𝑛 ] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

𝜎 ⊢ 𝑝 ⇓ R ↦→ V[𝑣 ]
read: “𝑝 computes to R, which maps to 𝑣 in 𝜎 .”

Let 𝜎 ⊢ 𝑝□ [𝑥 ] ⇓ R ↦→ V[𝑣 ] = 𝜎 ⊢ 𝑝□ × 𝑥 ⇓ (R,V, 𝑣) .

𝜎 ⊢ 𝑝□ × R ⇓ (R′,V, 𝑣)
read: “R in a context 𝑝□ computes to R′ which maps to 𝑣 in 𝜎 with a context of V .”

P-Referent
𝜎 ⊢ R ⇓ V × 𝑣

𝜎 ⊢ □ × R ⇓ (R,V, 𝑣)

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ (R2,V, (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛))

𝜎 ⊢ 𝑝□ [□.𝑖 ] × R1 ⇓ (R2 .𝑖,V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛) ], 𝑣𝑖 )

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ (_, ptr 𝜋,)
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ (R2,V, 𝑣)

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R2,V, 𝑣)

P-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛 ])
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 ],V[[𝑣0 , . . . , □ , . . . , 𝑣𝑛 ] ], 𝑣𝑖 )

P-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧)
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 ],V[𝑣0 ] . . . [□] . . . [𝑣𝑛 ], 𝑣𝑖 )

P-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 .. 𝑗 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛 ])
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 .. 𝑗 ],V[[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛 ] ], ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧)

P-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 .. 𝑗 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧)
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 .. 𝑗 ],V[𝑣0 ] . . . [□] . . . [□] . . . [𝑣𝑛 ], ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧)
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Σ ⊢ 𝜎 : Γ
read: “𝜎 satisfies Γ under global context Σ”

WF-StackEmpty

Σ ⊢ • : •

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

Σ; Γ ⊢ 𝜍 : F𝑐
read: “𝜍 satisfies F𝑐 under Σ and Γ”

WF-Frame
dom(𝜍) = dom(F𝑐 ) |𝑥 ∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F𝑐 ; • ⊢ 𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐

Σ; Γ ⊢ 𝜍 : F𝑐

Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′ where ⊢ Σ; Δ; Γ; Θ and Σ; Δ; Γ′ ⊢ 𝜏

. . .

T-Shift
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ shift 𝑒 : 𝜏si ⇒ Γ′

T-Framed
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ ♮ F′

Σ; Δ; Γ; Θ ⊢ framed 𝑒 : 𝜏si ⇒ Γ′

T-Pointer
Σ; Γ ⊢ R□ [𝜋 ] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟 )

Σ; Δ; Γ; Θ ⊢ ptr R□ [𝜋 ] : &𝑟 𝜔 𝜏xi ⇒ Γ

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐 ) |var

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 ))) = dom(F𝑐 ) |rgn
Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ

T-Dead

Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏si
† ⇒ Γ

Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎′; 𝑒′ )
read: “𝜎 and 𝑒 step to 𝜎′ and 𝑒′ under Σ”

E-Move
𝜎 ⊢ 𝜋 ⇓ 𝜋 ↦→ _[𝑣 ]

Σ ⊢ (𝜎 ; 𝜋 ) → (𝜎 [𝜋 ↦→ dead]; 𝑣 )

E-Copy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[𝑣 ]

Σ ⊢ (𝜎 ; 𝑝 ) → (𝜎 ; 𝑣 )

E-Borrow
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[_]

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 ) → (𝜎 ; ptr R )

E-BorrowIndex
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 0 ≤ 𝑛𝑖 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛𝑖 ] ) → (𝜎 ; ptr R[𝑛𝑖 ] )

E-BorrowSlice
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2 ] ) → (𝜎 ; ptr R[𝑛1 ..𝑛2 ] )
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E-BorrowIndexOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 ∗ 𝑝 [𝑛𝑖 ] ) → (𝜎 ; abort!(“attempted to index out of bounds”) )

E-BorrowSliceOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 𝑛1 < 0 ∨ 𝑛1 > 𝑛 ∨ 𝑛2 < 0 ∨ 𝑛2 > 𝑛 ∨ 𝑛1 > 𝑛2

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2 ] ) → (𝜎 ; abort!(“attempted to slice out of bounds”) )

E-IndexCopy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛𝑖 , . . . , 𝑣𝑛 ] ]

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖 ] ) → (𝜎 ; 𝑣𝑛𝑖 )

E-IndexCopyOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖 ] ) → (𝜎 ; abort!(“attempted to index out of bounds”) )

E-Framed

Σ ⊢ (𝜎 ♮ 𝜍 ; framed 𝑣 ) → (𝜎 ; 𝑣 )

E-Shift

Σ ⊢ (𝜎 , 𝑥 ↦→ 𝑣′; shift 𝑣 ) → (𝜎 ; 𝑣 )

E-IfTrue

Σ ⊢ (𝜎 ; if true { 𝑒1 } else { 𝑒2 } ) → (𝜎 ; 𝑒1 )

E-IfFalse

Σ ⊢ (𝜎 ; if false { 𝑒1 } else { 𝑒2 } ) → (𝜎 ; 𝑒2 )

E-MatchLeft

Σ ⊢ (𝜎 ; match Left::<𝜏si1 , 𝜏si2 > (𝑣) { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } ) → (𝜎 , 𝑥1 ↦→ 𝑣; shift 𝑒1 )

E-MatchRight

Σ ⊢ (𝜎 ; match Right::<𝜏si1 , 𝜏si2 > (𝑣) { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } ) → (𝜎 , 𝑥2 ↦→ 𝑣; shift 𝑒2 )

E-LetRegion

Σ ⊢ (𝜎 ; letrgn <𝑟> { 𝑣 } ) → (𝜎 ; 𝑣 )

E-Let

Σ ⊢ (𝜎 ; let 𝑥 : 𝜏si𝑎 = 𝑣; 𝑒 ) → (𝜎 , 𝑥 ↦→ 𝑣; shift 𝑒 )

E-Seq

Σ ⊢ (𝜎 ; 𝑣; 𝑒 ) → (𝜎 ; 𝑒 )

E-Assign
𝜎 ⊢ 𝑝 ⇓ R ↦→ V[_] R = R□ [𝑥 ]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣 ) → (𝜎 [𝑥 ↦→ V [𝑣 ] ]; ( ) )

E-While

Σ ⊢ (𝜎 ; while 𝑒1 { 𝑒2 } ) → (𝜎 ; if 𝑒1 { 𝑒2; while 𝑒1 { 𝑒2 } } else { ( ) } )

E-ForArray

Σ ⊢ (𝜎 ; for 𝑥 in [𝑣0 , . . . , 𝑣𝑛 ] { 𝑒 } ) → (𝜎 , 𝑥 ↦→ 𝑣0; shift 𝑒 ; for 𝑥 in [𝑣1 , . . . , 𝑣𝑛 ] { 𝑒 } )

E-ForSlice
𝜎 ⊢ R ⇓ _ ↦→ _[ [𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛 ] ] 𝑖 < 𝑗 𝑖′ = 𝑖 + 1

Σ ⊢ (𝜎 ; for 𝑥 in ptr R[𝑖 .. 𝑗 ] { 𝑒 } ) → (𝜎 , 𝑥 ↦→ ptr R[𝑖 ]; shift 𝑒 ; for 𝑥 in ptr R[𝑖′.. 𝑗 ] { 𝑒 } )

E-ForEmptyArray

Σ ⊢ (𝜎 ; for 𝑥 in [] { 𝑒 } ) → (𝜎 ; ( ) )

E-ForEmptySlice

Σ ⊢ (𝜎 ; for 𝑥 in ptr 𝜋 [𝑛..𝑛] { 𝑒 } ) → (𝜎 ; ( ) )

E-Closure
𝑥𝑓 = free-vars(𝑒) 𝑥𝑛𝑐 = free-nc-vars𝜎 (𝑒) 𝜍𝑐 = 𝜎 | 𝑥𝑓

Σ ⊢ (𝜎 ; |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ) → (𝜎 [𝑥𝑛𝑐 ↦→ dead]; ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩ )
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E-AppClosure
𝑣𝑓 = ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩

Σ ⊢ (𝜎 ; 𝑣𝑓 (𝑣1 , . . . , 𝑣𝑛) ) → (𝜎 ♮ 𝜍𝑐 , 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 )

E-AppFunction
Σ(𝑓 ) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛) → 𝜏s𝑟 where 𝜚 : 𝜚 ′ { 𝑒 }

Σ ⊢ (𝜎 ; 𝑓 ::<Φ , 𝑟 ′ , 𝜏s> (𝑣1 , . . . , 𝑣𝑛) ) → (𝜎 ♮ 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 [Φ/𝜑 ] [𝑟 ′/𝜚 ] [𝜏
s/𝛼 ] )

E-EvalCtx
Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎′; 𝑒′ )

Σ ⊢ (𝜎 ; C[𝑒 ] ) → (𝜎′; C[𝑒′] )

E-EvalCtxAbort

Σ ⊢ (𝜎 ; C[abort!(str) ] ) → (𝜎 ; abort!(str) )
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E METATHEORY
E.1 Standard Lemmas

Lemma E.1 (Canonical Forms). If Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ then

(1) if 𝜏 = bool, then 𝑣 = true or 𝑣 = false.
(2) if 𝜏 = u32, then 𝑣 = 𝑛.

(3) if 𝜏 = unit, then 𝑣 = ( ).
(4) if 𝜏 = &𝜌 𝜔 𝜏 si, then 𝑣 is of the form ptr R.
(5) if 𝜏 = &𝜌 𝜔 [𝜏 si], then 𝑣 is of the form ptr R[𝑖 .. 𝑗].
(6) if 𝜏 = ∀<𝜑 , 𝜚 , 𝛼>(𝜏 si1 , . . . , 𝜏 si𝑛 ) → 𝜏 si𝑟 where 𝜚1 : 𝜚2, then 𝑣 is of the form 𝑓 .

(7) if 𝜏 = (𝜏 si1 , . . . , 𝜏 si𝑛 )
F→ 𝜏 si𝑟 , then 𝑣 is of the form ⟨𝜎 , |𝑥1 : 𝜏 si1 , . . . , 𝑥𝑛 : 𝜏 si𝑛 | → 𝜏 si𝑟 { 𝑒 } ⟩.

(8) if 𝜏 = [𝜏 ′; 𝑛], then 𝑣 is of the form [𝑣1 , . . . , 𝑣𝑛].
(9) if 𝜏 = [𝜏 ′], then 𝑣 is of the form ⟦𝑣1 , . . . , 𝑣𝑛⟧.
(10) if 𝜏 = (𝜏1 , . . . , 𝜏𝑛), then 𝑣 is of the form (𝑣1 , . . . , 𝑣𝑛).
(11) if 𝜏 = Either<𝜏1 , 𝜏2>, then 𝑣 is of either the form Left::<𝜏1 , 𝜏2>(𝑣 ′) or Right::<𝜏1 , 𝜏2>(𝑣 ′).

Proof. By inspection of the grammar of values and typing rules. □

Lemma E.2 (Preservation of Types under Substitution).

(1) If Σ; Δ , 𝛼 :★; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′ and Σ; Δ; Γ ⊢ 𝜏 ′, then Σ; Δ; Γ; Θ ⊢ 𝑒 [𝜏 ′/𝛼 ] : 𝜏 [𝜏′/𝛼 ] ⇒
Γ′[𝜏′/𝛼 ]

(2) If Σ; Δ , 𝜚 : RGN; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′ and Δ; Γ ⊢ 𝜌 , then Σ; Δ; Γ; Θ ⊢ 𝑒 [𝜌/𝜚 ] : 𝜏 [𝜌/𝜚 ] ⇒
Γ′[𝜌/𝜚 ]

(3) If Σ; Δ , 𝜑 :FRM; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′ and Σ; Δ; Γ ⊢ Φ, then Σ; Δ; Γ; Θ ⊢ 𝑒 [Φ/𝜑 ] : 𝜏 [Φ/𝜑 ] ⇒
Γ′[Φ/𝜑 ]

Proof. By induction on the typing derivation. □

E.2 Referent Lemmas
Lemma E.3 (Well-Formed References Evaluate to Well-Typed Values). If Σ; Γ ⊢ R : 𝜏xi

and Σ ⊢ 𝜎 : Γ, then 𝜎 ⊢ R ⇓ V × 𝑣 .

Proof. We proceed by induction on Σ; Γ ⊢ R : 𝜏xi. There are six cases: WF-RefId, WF-RefProj,
WF-RefIndexArray, WF-RefIndexSlice, WF-RefSliceArray, and WF-RefSliceSlice. Each of these cases
has a corresponding evaluation rule:

WF-RefId
Γ (𝑥) = 𝜏si

Σ; Γ ⊢ 𝑥 : 𝜏si

ER-Id
𝜎 (𝑥) = 𝑣

𝜎 ⊢ 𝑥 ⇓ □ × 𝑣

For the base case, we consider the frame of Γ which contains 𝑥 . By inversion of WF-
StackFrame for the portion of the derivation Σ ⊢ 𝜎 : Γ pertaining to that frame, we have
∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F ; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F )(𝑥) ⇒ Γ ♮ F . Focusing on our particular
𝑥 , we have both that 𝜎 (𝑥) = 𝑣 and that Σ; •; Γ ♮ F ; • ⊢ 𝑣 : (Γ ♮ F )(𝑥) ⇒ Γ ♮ F , finishing the case.
The remaining cases follow:
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WF-RefProjection
Σ; Γ ⊢ R : (𝜏si0 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛 )

Σ; Γ ⊢ R .𝑖 : 𝜏si𝑖

ER-Projection
𝜎 ⊢ R ⇓ V × (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)

𝜎 ⊢ R .𝑖 ⇓ V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛) ] × 𝑣𝑖

WF-RefIndexArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 < 𝑛

Σ; Γ ⊢ R [𝑖 ] : 𝜏si

ER-IndexArray
𝜎 ⊢ R ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛 ]

𝜎 ⊢ R [𝑖 ] ⇓ V [[𝑣0 , . . . , □ , . . . , 𝑣𝑛 ] ] × 𝑣𝑖

WF-RefIndexSlice
Σ; Γ ⊢ R : [𝜏si ]
Σ; Γ ⊢ R [𝑖 ] : 𝜏si

ER-IndexSlice
𝜎 ⊢ R ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑘 , . . . , 𝑣𝑛⟧

𝜎 ⊢ R [𝑘 ] ⇓ V [𝑣0 ] . . . [□] . . . [𝑣𝑛 ] × 𝑣𝑖+𝑘

WF-RefSliceArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 ≤ 𝑗 < 𝑛

Σ; Γ ⊢ R [𝑖 .. 𝑗 ] : [𝜏si ]

ER-SliceArray
𝜎 ⊢ R ⇓ V × [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛 ]

𝜎 ⊢ R [𝑖 .. 𝑗 ] ⇓ V [[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛 ] ] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

WF-RefSliceSlice
Σ; Γ ⊢ R : [𝜏si ] 𝑖 ≤ 𝑗

Σ; Γ ⊢ R [𝑖 .. 𝑗 ] : [𝜏si ]

ER-SliceSlice
𝜎 ⊢ R ⇓ V × ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧

𝜎 ⊢ R [𝑖 .. 𝑗 ] ⇓ V [𝑣0 ] . . . [□] . . . [□] . . . [𝑣𝑛 ] × ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧

The proof for each case is identical: apply the induction hypothesis and then Lemma E.1 and
then the evaluation rule on the right. For the well-typed portion, apply inversion on the typing
rule for the appropriate value. □

Lemma E.4 (Place Expressions Reduce). If Δ; Γ ⊢𝜔 𝑝 : 𝜏xi and Σ ⊢ 𝜎 : Γ, then 𝜎 ⊢ 𝑝 ⇓ R ↦→
V[𝑣] and Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏xi ⇒ Γ.

Proof. We proceed by induction on Δ; Γ ⊢𝜔 𝑝 : 𝜏xi. There are three cases: TC-Var, TC-Proj, and
TC-Deref.

TC-Var
Γ (𝑥) = 𝜏si

Δ; Γ ⊢𝜔 𝑥 : 𝜏si, ∅

P-Referent
𝜎 ⊢ R ⇓ V × 𝑣

𝜎 ⊢ □ × R ⇓ (R,V, 𝑣)

For TC-Var, we consider the piece of the derivation for Σ ⊢ 𝜎 : Γ (from our premise) for the frame
containing 𝑥 . By inversion on WF-StackFrame, we have ∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F ; • ⊢ (𝜎 ♮ 𝜍) (𝑥) :
(Γ ♮ F )(𝑥) ⇒ Γ ♮ F . This immediately gives us that 𝜎 (𝑥) = 𝑣 and that Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏xi ⇒ Γ.
To construct our premise for P-Referent, we apply ER-Id to 𝜎 (𝑥) = 𝑣 .

TC-Proj
Δ; Γ ⊢𝜔 𝑝 : (𝜏si1 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛 ), { 𝜌𝑝 }

Δ; Γ ⊢𝜔 𝑝.𝑖 : 𝜏si𝑖 , { 𝜌𝑝 }

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ (R2,V, (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛))

𝜎 ⊢ 𝑝□ [□.𝑖 ] × R1 ⇓ (R2 .𝑖,V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛) ], 𝑣𝑖 )

For TC-Proj, we apply our induction hypothesis to Δ; Γ ⊢𝜔 𝑝 : (𝜏si1 , . . . , 𝜏si
𝑖
, . . . , 𝜏si𝑛 ), {𝜌𝑝 } from

the premise of TC-Proj and get 𝜎 ⊢ 𝑝 ⇓ R ↦→ V[𝑣] and Σ; Δ; Γ; Θ ⊢ 𝑣 : (𝜏si1 , . . . , 𝜏si
𝑖
, . . . , 𝜏si𝑛 ) ⇒

Γ. Then, by Lemma E.1, we know that 𝑣 must be of the form (𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛). We can use
this and the definition of 𝜎 ⊢ 𝑝 ⇓ R ↦→ V[𝑣] to get 𝜎 ⊢ 𝑝□ × 𝑥 ⇓ (R,V, (𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛))
(where 𝑝□ [𝑥] = 𝑝). This is precisely the premise of P-Proj and thus we can use that. We also have
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by inversion of T-Tuple for Σ; Δ; Γ; Θ ⊢ 𝑣 : (𝜏si1 , . . . , 𝜏si
𝑖
, . . . , 𝜏si𝑛 ) ⇒ Γ that Σ; Δ; Γ; Θ ⊢ 𝑣𝑖 :

𝜏si
𝑖
⇒ Γ.

TC-Deref
Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔′ 𝜏xi, { 𝜌𝑝 } 𝜔 ≲ 𝜔′

Δ; Γ ⊢𝜔 ∗𝑝 : 𝜏xi, { 𝜌𝑝 , 𝜌 }

For TC-Deref, we apply our induction hypothesis to Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔 ′ 𝜏xi, { 𝜌𝑝 } to get
𝜎 ⊢ 𝑝 ⇓ R ↦→ V[𝑣] and Σ; Δ; Γ; Θ ⊢ 𝑣 : &𝜌 𝜔 ′ 𝜏xi ⇒ Γ. Then, by Lemma E.1, we know that 𝑣
must of the form ptr R. We now have five subcases to consider depending on whether R is of 𝜋 ,
R3 [𝑖], or R[𝑖 .. 𝑗], and for the latter two, whether 𝜏xi is [𝜏si; 𝑛] or [𝜏si].

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ (_, ptr 𝜋,)
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ (R2,V, 𝑣)

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R2,V, 𝑣)

P-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛 ])
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 ],V[[𝑣0 , . . . , □ , . . . , 𝑣𝑛 ] ], 𝑣𝑖 )

P-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧)
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 ],V[𝑣0 ] . . . [□] . . . [𝑣𝑛 ], 𝑣𝑖 )

P-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 .. 𝑗 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛 ])
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 .. 𝑗 ],V[[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛 ] ], ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧)

P-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 .. 𝑗 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧)
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 .. 𝑗 ],V[𝑣0 ] . . . [□] . . . [□] . . . [𝑣𝑛 ], ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧)

In all these cases, we know structurally that 𝑝□ = □ since TC-Deref has no context outside of
the dereference. So, for each of them, we need to be able to show □ ⊢ R ⇓ R ′ ↦→ V[𝑣 ′]. Inversion
on T-Pointer gives us Σ; Γ ⊢ R : 𝜏xi. We can then apply Lemma E.3 to get Σ ⊢ Γ ⇓ V × 𝑣 . Then,
we can apply P-Referent to this to produce the derivation we need to apply the appropriate rule.
For P-DerefIndexPtrArray and P-DerefSlicePtrArray, we apply Lemma E.1 to get that the value is
an array. For P-DerefIndexPtrSlice and P-DerefSlicePtrSlice, we apply Lemma E.1 to get that the
value is a slice value. □

Lemma E.5 (Reduced Place Expressions Produce Valid Referents). If Σ ⊢ 𝜎 : Γ and 𝜎 ⊢ 𝑝 ⇓
R□ [𝜋] ↦→ V[𝑣], then Σ; Γ ⊢ R□ [𝜋] : 𝜏xi.

Proof. We start by rewriting 𝜎 ⊢ 𝑝 ⇓ R□ [𝜋] ↦→ V[𝑣] with its definition to get 𝜎 ⊢ 𝑝□ × 𝑥 ⇓
(R□ [𝜋],V, 𝑣) where 𝑝 = 𝑝□ [𝑥]. We then proceed by induction by cases (note this means our
induction hypothesis is really about the rewritten form).

P-Referent
𝜎 ⊢ R ⇓ V × 𝑣

𝜎 ⊢ □ × R ⇓ (R,V, 𝑣)

WF-RefId
Γ (𝑥) = 𝜏si

Σ; Γ ⊢ 𝑥 : 𝜏si
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P-Referent only applies if the context is □ which is only the case if our original place expression
was 𝑥 . We can rewrite with this knowledge to see that we really have 𝜎 ⊢ 𝑥 ⇓ _ × 𝑣 in our premise.
Inversion on ER-Id gives us 𝜎 (𝑣) = Then, we consider the frame of Γ which contains 𝑥 . By inversion
of WF-StackFrame for the portion of the derivation Σ ⊢ 𝜎 : Γ pertaining to that frame, we have
∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F ; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F )(𝑥) ⇒ Γ ♮ F . Focusing on our particular 𝑥 , we
have both that Γ(𝑥) = 𝑣 . We can then apply WF-RefId.

P-Proj
𝜎 ⊢ 𝑝□ × R1 ⇓ (R2,V, (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛))

𝜎 ⊢ 𝑝□ [□.𝑖 ] × R1 ⇓ (R2 .𝑖,V[(𝑣0 , . . . , □ , . . . , 𝑣𝑛) ], 𝑣𝑖 )

WF-RefProjection
Σ; Γ ⊢ R : (𝜏si0 , . . . , 𝜏si𝑖 , . . . , 𝜏si𝑛 )

Σ; Γ ⊢ R .𝑖 : 𝜏si𝑖

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × R1 ⇓ (R2, _, (𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛)) gives us
Σ; Γ ⊢ R2 : (𝜏si0 , . . . , 𝜏si

𝑖
, . . . , 𝜏si𝑛 ). We can then apply WF-RefProjection.

P-DerefPtr
𝜎 ⊢ □ × R1 ⇓ (_, ptr 𝜋,)
𝜎 ⊢ 𝑝□ × 𝜋 ⇓ (R2,V, 𝑣)

𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R2,V, 𝑣)

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × 𝜋 ⇓ (R2, _, 𝑣) gives us Σ; Γ ⊢ R2 : 𝜏xi.

P-DerefIndexPtrArray
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛 ])
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 ],V[[𝑣0 , . . . , □ , . . . , 𝑣𝑛 ] ], 𝑣𝑖 )

WF-RefIndexArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 < 𝑛

Σ; Γ ⊢ R [𝑖 ] : 𝜏si

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × R2 ⇓ (R3, _, [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛]) gives us
Σ; Γ ⊢ R3 : [𝜏si; 𝑛]. Then, we can apply WF-RefIndexArray to get Σ; Γ ⊢ R3 [𝑖] : 𝜏si.

P-DerefIndexPtrSlice
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧)
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 ],V[𝑣0 ] . . . [□] . . . [𝑣𝑛 ], 𝑣𝑖 )

WF-RefIndexSlice
Σ; Γ ⊢ R : [𝜏si ]
Σ; Γ ⊢ R [𝑖 ] : 𝜏si

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ × R2 ⇓ (R3, _, ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟧) gives us
Σ; Γ ⊢ R3 : [𝜏si]. Then, we can apply WF-RefIndexSlice to get Σ; Γ ⊢ R3 [𝑖] : 𝜏si.

P-DerefSlicePtrArray
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 .. 𝑗 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛 ])
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 .. 𝑗 ],V[[𝑣0 , . . . , □𝑗−𝑖+1 , . . . , 𝑣𝑛 ] ], ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧)

WF-RefSliceArray
Σ; Γ ⊢ R : [𝜏si; 𝑛] 0 ≤ 𝑖 ≤ 𝑗 < 𝑛

Σ; Γ ⊢ R [𝑖 .. 𝑗 ] : [𝜏si ]

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ ×R2 ⇓ (R3, _, [𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑛]) gives
us Σ; Γ ⊢ R3 : [𝜏si; 𝑛]. Then, we can apply WF-RefSliceArray to get Σ; Γ ⊢ R3 [𝑖 .. 𝑗] : 𝜏si.
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P-DerefSlicePtrSlice
𝜎 ⊢ □ × R1 ⇓ (_, ptr R2 [𝑖 .. 𝑗 ],)

𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛⟧)
𝜎 ⊢ 𝑝□ [∗□] × R1 ⇓ (R3 [𝑖 .. 𝑗 ],V[𝑣0 ] . . . [□] . . . [□] . . . [𝑣𝑛 ], ⟦𝑣𝑖 , . . . , 𝑣𝑗⟧)

WF-RefSliceSlice
Σ; Γ ⊢ R : [𝜏si ] 𝑖 ≤ 𝑗

Σ; Γ ⊢ R [𝑖 .. 𝑗 ] : [𝜏si ]

Applying the induction hypothesis to 𝜎 ⊢ 𝑝□ ×R2 ⇓ (R3, _, ⟦𝑣0 , . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑛⟧) gives
us Σ; Γ ⊢ R3 : [𝜏si]. Then, we can apply WF-RefSliceSlice to get Σ; Γ ⊢ R3 [𝑖 .. 𝑗] : 𝜏si. □

Lemma E.6 (Reduced Place Expressions Have Roots in Loan Sets). If Σ ⊢ 𝜎 : Γ, 𝜎 ⊢ 𝑝 ⇓
R□ [𝜋] ↦→ V[𝑣], and •; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ }, then R = R□ [𝜋] and 𝜔𝜋 ∈ { ℓ }.

Proof. We proceed by induction on •; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ }. There are ordinarily three cases:
O-SafePlace, O-Deref, and O-DerefAbs. However, O-DerefAbs requires the type variable context to
contain entries, and thus can be immediately discharged by contradiction. This leaves us with only
O-SafePlace and O-Deref.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

O-SafePlace tells us that our 𝑝 is in fact a place 𝜋 meaning that it does not contain any dereferences.
As such, we know that 𝜎 ⊢ 𝑝 ⇓ R□ [𝜋] ↦→ V[𝑣] must have been derived using a combination of
P-Referent and P-Proj corresponding to the structure of 𝜋 . The resulting referent in such a case is
precisely 𝜋 (meaning R□ = □), which we know is in the output immediately from the definition of
O-SafePlace.

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

In the premise of O-Deref, we have a number of ownership safety derivations corresponding to
each of the loans for the pointer being dereferenced. Since we knowwe have a dereference, we know
that we must have derived 𝜎 ⊢ 𝑝 ⇓ R□ [𝜋] ↦→ V[𝑣] using one of the five dereference rules at the
appropriate point (P-DerefPtr, P-DerefIndexPtrArray, P-DerefIndexPtrSlice, P-DerefSlicePtrArray,
and P-DerefSlicePtrSlice). Each of which share a common premise (at least when sufficiently
generalized): 𝜎 ⊢ 𝑝□ × R2 ⇓ (R3,V, 𝑣). Here, R2 corresponds to the referent of the pointer we are
dereferencing. As such, we know that one of the derivations of ownership safety corresponds to
that particular referent. So, we can apply our induction hypothesis and get that 𝜔𝜋 ∈ { 𝜔𝑝 ′

𝑖
} for

the appropriate ownership safety derivation numbered i. The final output is the union of all of
these sets, and thus we can generalize to 𝜔𝜋 ∈ { 𝜔𝑝 ′

1 , . . . ,
𝜔𝑝 ′

𝑛 , . . . , 𝜔𝑝□ [∗𝜋] }. □

E.3 Preservation under Region Rewriting Lemmas

Lemma E.7 (Ownership Safety is Preserved under Region Rewriting). If •; Γ; Θ ⊢𝜋𝑒𝜔 𝑝 ⇒
{ ℓ ′ } and •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ and { 𝜋𝑒 } ⊆ { 𝜋 ′

𝑒 } then •; Γ′; Θ ⊢𝜋𝑒𝜔 𝑝 ⇒ { ℓ ′′ }.
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Proof. We proceed by induction on the region rewriting judgement. We note that if 𝜇 is =,
then by inspection of the outlives judgement, Γ = Γ′, so the proof follows immediately from the
premise. So consider when 𝜇 is +. The only case that doesn’t follow immediately by induction and
application of premises is RR-Reference, and in this case the only interesting part of the proof is
the outlives constraint.

Proceeding by induction on the outlives constraint, the only interesting case is
OL-CombineConcrete.

OL-CombineConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb Γ; Θ ⊢ { 𝑟1 , 𝑟2 } clrs
𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)

Δ; Γ; Θ ⊢+ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

Wewant to show that Δ; Γ [𝑟2 ↦→ { ℓ }]; Θ ⊢𝜋𝑒𝜔 𝑝 ⇒ { ℓ ′′ }. Proceed by induction on the ownership
safety judgement in the premise.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

Let 𝑟 ′ be an arbitrary region. There are two cases to prove, dependingwhich part of the disjunction
is true for the premise Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { ℓ ′ }.
If the first part was true, then we need to show that ∀𝜔′

𝑝□ [𝜋 ′] ∈ Γ [𝑟2 ↦→ { ℓ ′′ }] (𝑟 ′). (𝜔 =

uniq ∨ 𝜔 ′ = uniq) =⇒ 𝜋 ′ #𝜋 . This is only interesting when 𝑟 ′ = 𝑟2. Using the fact that
Γ [𝑟2 ↦→ { ℓ }] (𝑟2) = Γ(𝑟1) ∪ Γ(𝑟2), we need to show ∀𝜔′

𝑝□ [𝜋 ′] ∈ Γ(𝑟1) ∪ Γ(𝑟2). (𝜔 = uniq ∨𝜔 ′ =
uniq) =⇒ 𝜋 ′ #𝜋 . This is immediate if we can show that 𝑟1 and 𝑟2 are not excluded. This
is immediate from the region not reborrowed judgement. For 𝑟1 or 𝑟2 to be excluded, for each
reference 𝜋 ′′ that has 𝑟1 or 𝑟2, there would have to be a loan of the form 𝑝□ [∗𝜋 ′′], but such loans
are precisely what the region not reborrowed judgement excludes.

If the second part was true, then we can prove the second part immediately from the hypothesis,
because the types of references are unchanged, Θ is unchanged, and the exclusion list can only
grow.

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

Firstly, note that the exclusion list will be equal if 𝑟 ≠ 𝑟2, and will be potentially larger if 𝑟 = 𝑟2.
Therefore we can immediately apply our induction hypothesis to get ownership safety for 𝑝□ [𝑝𝑖 ]
under Γ [𝑟2 ↦→ ℓ].
For the rest of the case, apply identical reasoning to that in the O-SafePlace case.
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O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

Since Δ = •, there are no valid reference types that have an abstract region, meaning the first
hypothesis is a contradiction.

□

Lemma E.8 (Type Computation is Preserved under Region Rewriting). If •; Γ ♮ F ⊢𝜔 𝑝 : 𝜏 si
and •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ then •; Γ′ ♮ F ⊢𝜔 𝑝 : 𝜏 si.

Proof. The proof is immediate by inspection of the type computation judgement, because the
only things considered in the judgement are the types of places in Γ, which cannot change through
the region rewriting judgement (in other words, dom(Γ) = dom(Γ′)). □

Lemma E.9 (Outlives is Preserved under Region Rewriting). If •; Γ ♮ F ; Θ ⊢𝜇 𝑟1 :> 𝑟2 ⊣
Γ𝑜 ♮ F𝑜 and •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ then •; Γ′ ♮ F ; Θ ⊢𝜇 𝑟1 :> 𝑟2 ⊣ Γ′𝑜 ♮ F ′

𝑜 .

Proof. We proceed by induction on the outlives judgement. The only interesting cases are
OL-CombineConcrete and OL-CheckConcrete. In both cases, the only non immediate premise is
the region not reborrowed judgement. Proceed by induction over the region rewriting hypothesis,
and in the interesting case RR-Reference, proceed by induction over the outlives judgement. In this
case, the only interesting case is when the loan sets in Γ potentially change, OL-CombineConcrete.
But note that no new loans are generated, only loans are copied into other sets. For this reason, the
region not reborrowed judgements we already have are sufficient, because these loans that are now
potentially in two loan sets were already found to not contain any problematic reborrows. □

Lemma E.10 (Region Rewriting is Preserved under Region Rewriting). If •; Γ ♮ F ; Θ ⊢𝜇
𝜏1 { 𝜏2 ⊣ Γ𝑜 ♮ F𝑜 and •; Γ; Θ ⊢𝜇 𝜏 ′1 { 𝜏 ′2 ⊣ Γ′ then •; Γ′ ♮ F ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′𝑜 ♮ F ′

𝑜 .

Proof. Proceed by induction over the the region rewriting judgement. The only interesting case
is RR-Reference, for which we just apply Lemma E.9. □

Lemma E.11 (Region Rewriting is Preserved by Garbage Collecting Loans). If •; Γ; Θ ⊢𝜇
𝜏 ′1 { 𝜏 ′2 ⊣ Γ′ then •; gc-loansΘ (Γ); Θ ⊢𝜇 𝜏 ′1 { 𝜏 ′2 ⊣ Γ′′.

Proof. We proceed by induction over the region rewriting judgement, in which the only inter-
esting case is RR-Reference. We then proceed by induction over the outlives relation, in which the
only interesting cases are OL-CombineConcrete and OL-CheckConcrete. The only interesting part
of the judgement is the region not reborrowed, and this is immediate because garbage collection
will only potentially remove some loans. □

Lemma E.12 (Closure Body Typing is Preserved under Region Rewriting). If Σ; •; Γ ♮ F ; Θ ⊢
𝑒 : 𝜏 ⇒ Γ𝑜 ♮ F𝑜 and •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ then Σ; •; Γ′ ♮ F ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′𝑜 ♮ F ′

𝑜 and

•; Γ′𝑜 ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′′𝑜 .

Proof. Proceed by induction over the typing derivation for 𝑒 .
The T-Abort, T-Function, T-Unit, T-u32, T-True, and T-False cases follow immediately.
The T-LetRegion, T-While, T-Closure, T-Tuple, T-Array, T-Slice, T-Drop, T-Left, and T-Right cases

all follow immediately from the induction hypothesis.
The T-Seq case follows from the induction hypothesis and Lemma E.11.
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The T-Branch, T-Let, and T-Match cases follow from the induction hypothesis, Lemma E.10, and
Lemma E.11. Note the reborrow restriction follows immediately from the fact that rewriting can
at most union together loan sets, which means the overall loans considered for the region not
reborrowed judgement are the same in the context after rewriting.
The T-Move, T-Copy, T-Borrow, T-BorrowIndex, T-BorrowSlice, T-IndexCopy, T-ForArray, and

T-ForSlice cases follow from the induction hypothesis, Lemma E.7, and Lemma E.8.
The T-AppFunction and T-AppClosure cases follow from the induction hypothesis, Lemma E.9,

and the fact that context, region, and type well formedness aren’t affected by changes in the loan
sets. □

Lemma E.13 (Value Typing is Preserved under Region Rewriting). If Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ
and •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ then Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ′.

Proof. We proceed by induction on the value typing.

T-Pointer
Σ; Γ ⊢ R□ [𝜋 ] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟 )

Σ; •; Γ; Θ ⊢ ptr R□ [𝜋 ] : &𝑟 𝜔 𝜏xi ⇒ Γ

The T-Pointer case is immediate, because by inspection of the referent well formedness, there is
no reliance on loan sets, and the loan is preserved since by inspection of the rewriting judgement,
the loan sets either stay the same or potentially grow.

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐 ) |var

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 ))) = dom(F𝑐 ) |rgn
Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ

First, we invert the stack frame typing hypothesis to get that ∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F𝑐 ; Θ ⊢
𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐 . We can apply the induction hypothesis to each of these statements, and
apply WF-Frame to get Σ; Γ′ ⊢ 𝜍𝑐 : F𝑐 .

For the typing of the body, we can apply Lemma E.12. □

Lemma E.14 (Stack Well-Formedness is Preserved under Region Rewriting). If Σ ⊢ 𝜎 : Γ
and •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ then Σ ⊢ 𝜎 : Γ′.

Proof. We proceed by induction on the stack typing derivation.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

WF-StackEmpty

Σ ⊢ • : •

The WF-StackEmpty case is immediate. In the WF-StackFrame case, we get the well formedness
in the premise from our induction hypothesis. What’s left to show is that for all of the values 𝑣 in
the stack frame, they remain well typed in Γ′. This follows from applying Lemma E.13. □
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E.4 Preservation under Drops and Garbage Collection Lemmas
Lemma E.15 (Values Change Environments in Limited Ways). If Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ′ ,

then Σ; Δ ⊢ Γ ▷ Γ′.

Proof. We proceed by induction on the structure of the typing derivation. Since we assume
that the expression being typed is a value, we need only consider the cases that can be used to type
a value.

Formany cases, the output environments are precisely the input environments, and thus this holds
immediately. These cases are T-Unit, T-u32, T-True, T-False, T-Pointer, T-Function, T-ClosureValue,
and T-Dead.
For T-Tuple, T-Array, T-Left, and T-Right, knowing that we have a value means that all of

the subterms are themselves values, and thus we can apply our induction hypothesis to them in
sequence (relying on the transitivity of ≲ for stack typings).

This leaves us with one remaining case: T-Drop.

T-Drop
Γ (𝜋 ) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

For T-Drop, we apply our induction hypothesis to Σ; Δ; Γ [𝜋 ↦→ 𝜏si
†

𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓 which
tells us that Σ; Δ ⊢ Γ [𝜋 ↦→ 𝜏si

†
𝜋 ] ▷ Γ𝑓 . Then, by R-Env, we have that Σ; Δ ⊢ Γ ▷ Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]. Then,

by transitivity, we have Σ; Δ ⊢ Γ ▷ Γ𝑓 . □

Lemma E.16 (Type Computation is Preserved in Related Environments). If Σ; Δ ⊢ Γ ▷ Γ′

and Δ; Γ ⊢𝜔 𝑝□ [𝜋] : 𝜏, { 𝜌 } and Γ(𝜋) = Γ′(𝜋), then Δ; Γ′ ⊢𝜔 𝑝□ [𝜋] : 𝜏, { 𝜌 }.

Proof. We proceed by induction on the type computation derivation. TC-Var follows immedi-
ately by the same type hypothesis, and TC-Proj follows from applying the induction hypothesis.
All that is left is TC-Deref.

TC-Deref
Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔′ 𝜏xi, { 𝜌𝑝 } 𝜔 ≲ 𝜔′

Δ; Γ ⊢𝜔 ∗𝑝 : 𝜏xi, { 𝜌𝑝 , 𝜌 }

First, we can apply the induction hypothesis to get the type computation for 𝑝 . Then, all that’s
left is to show the outlives constraint, but this is immediate because Δ is unchanged and both Γ
and Γ′ have the exact same domains.

□

Lemma E.17 (Ownership Safety Preserved in Related Environments). IfΔ; Γ;Θ ⊢𝜋𝑒𝜔 𝑝 ⇒ {ℓ}
and Σ; Δ ⊢ Γ ▷ Γ′ and Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi and 𝑝 = 𝑝□ [𝜋𝑝 ] and Γ(𝜋𝑝 ) = Γ′(𝜋𝑝 ), then Δ; Γ′; Θ ⊢𝜋𝑒𝜔 𝑝 ⇒
{ ℓ }.

Proof. We proceed by induction on the 𝜔-safety derivation, for which there are three cases to
consider.
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O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

We’d like to show that O-SafePlace can be applied with context Γ′. First, note that for any 𝑟 ′, if
the right side of the or is true for Γ with 𝜋 then it will be true for Γ′ with 𝜋 . That is, if all of the
pointers with region 𝑟 ′ in Γ are in the exclusion list 𝜋 , then all of the pointers with region 𝑟 ′ in
Γ′ are also in the exclusion list 𝜋 . Note that Θ is unchanged between the two. Therefore, the only
cases we need to consider are where 𝑟 ′ occurs in pointers in Γ and Γ′ that do not occur in 𝜋 .

Since the only allowed change to loan sets is emptying, and an emptied loan set has the left side
of the disjunction as vacuously true, and if the loan set is the same we have the condition from the
ownership safety in the premise, we are done.

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

Firstly, we have that Γ(𝜋𝑖 ) = Γ′(𝜋𝑖 ), because Γ′(𝜋𝑖 ) must be an initialized type by the type
computation premise, and the only changes in types between Γ and Γ′ allowed by the environment
relation is dropping some types to uninitialized.

Second, note that Γ′(𝑟 ) = Γ(𝑟 ) since Γ′(𝜋) being a reference with region 𝑟 means we can’t empty
the loan set. So we proceed by applying the induction hypothesis for all 𝑛 loans, noting that the
type computation requirement follows from the well formedness of Γ′.
Finally, we have to show the statement about no conflicting loans, but here the argument is

identical to that in the O-SafePlace case. If the loan set is empty then we’re done, otherwise we just
use the ownership safety premise.

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

This case proceeds similarly to the O-Deref case, but with an added application of Lemma E.16
to get the type computation, and no application of any induction hypothesis. □

Lemma E.18 (Types Are Well Formed in Related Environments). If Σ; Δ ⊢ Γ ▷ Γ′ and
Σ; Δ; Γ ⊢ 𝜏xi and ∀𝑟 that occur in 𝜏xi, Γ(𝑟 ) = Γ′(𝑟 ), then Σ; Δ; Γ′ ⊢ 𝜏xi.

Proof. We proceed by induction on the type well formedness derivation. The only case that
doesn’t follow directly from induction and the fact that Δ and Θ are unchanged between the two
related environments is WF-Ref.
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WF-Ref
Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏xi

Σ; Δ; Γ ⊢ &𝜌 𝜔 𝜏xi

Firstly we apply our induction hypothesis to get that Σ; Δ; Γ′ ⊢ 𝜏xi𝑝 . What’s left to show is the loan
set condition on 𝑟 . If Γ′(𝑟 ) = ∅, then we’re done. Otherwise, we just need that the type computation
still holds, which we get from Lemma E.16. We know the places in these place expressions all have
the same type in Γ and Γ′ because between these two contexts the only changes allowed that could
cause problems here are dropping one of these places, but then Γ′ would not be well formed since
there would be an invalid loan.

□

Lemma E.19 (Related Environments Remain Well-Formed). If Σ; Δ ⊢ Γ ▷ Γ′ and ⊢
Σ; Δ; Γ ♮ F𝑐 ; Θ then ⊢ Σ; Δ; Γ′ ♮ F𝑐 ; Θ.

Proof. From the well formedness of Γ ♮ F𝑐 , we know that the places and disjointness conditions
both hold. We also know that the occurs in restriction holds, because we at most have the same
alive types. By Lemma E.18, noting that Σ; Δ ⊢ Γ ♮ F𝑐 ▷ Γ′ ♮ F𝑐 is immediate, we know that the
types remain well formed in the environment. We also have the well formedness of Γ′ as a premise
of the related environments judgement. All that’s left to show is the loan set condition. But for this
all we have to show is that each place computes to some type, which follows from Lemma E.16. We
know the types of the places in each place expression remain the same because the only allowed
changes between Γ and Γ′ are that places can be dropped and loan sets emptied, but if one such
place was dropped, then Γ′ would have not been well formed. □

Lemma E.20 (Related Input Environments Produce Similar Output Environments). If:
• Σ; Δ; Γ1; Θ ⊢ 𝑒1 : 𝜏1 ⇒ Γ2
• Σ; Δ; Γ1; Θ ⊢ 𝑒2 : 𝜏2 ⇒ Γ3
• Σ; Δ ⊢ Γ1 ▷ Γ

′
1

• Σ; Δ; Γ′1 ; Θ ⊢ 𝑒1 : 𝜏1 ⇒ Γ′2
• Σ; Δ; Γ′1 ; Θ ⊢ 𝑒2 : 𝜏2 ⇒ Γ′3
• Σ; Δ ⊢ Γ2 ▷ Γ

′
2

• Σ; Δ ⊢ Γ3 ▷ Γ
′
3

• ∀𝑥 ∈ dom(Γ2), Γ2 (𝑥) = Γ3 (𝑥) and Γ′2 (𝑥) = Γ′3 (𝑥)
• ∀𝑟 that occur in 𝑒1 or 𝑒2 or 𝜏1 or 𝜏2, Γ1 (𝑟 ) = Γ′1 (𝑟 )

then ∀𝑟 ∈ dom(Γ1), if Γ′2 (𝑟 ) = ∅ and Γ′3 (𝑟 ) ≠ ∅, then Γ2 (𝑟 ) = ∅, and if Γ′3 (𝑟 ) = ∅ and Γ′2 (𝑟 ) ≠ ∅,
then Γ3 (𝑟 ) = ∅.

Proof. The proofs for both statements in the conclusion follow identically, so without loss of
generality it suffices to show that if Γ′2 (𝑟 ) = ∅ and Γ′3 (𝑟 ) ≠ ∅, then Γ2 (𝑟 ) = ∅. Note there are two
cases to consider: that the loan set was empty all along, or that the loan set was at some point non
empty, but then got garbage collected.
First, at some point between Γ′1 and Γ′2 , 𝑟 mapped to a non empty set of loans but then was

garbage collected. In this case, Γ′2 must not contain any references that contain 𝑟 , since otherwise it
would have been invalid to garbage collect 𝑟 . But then since Γ′2 and Γ′3 agree on types, it must be
the case that it was also garbage collected in Γ′3 , which is a contradiction with the fact that Γ′3 (𝑟 ) is
non empty, so this case is impossible.
Second, at each step of the derivation between Γ′1 and Γ′2 , 𝑟 mapped to empty. If Γ1 (𝑟 ) also was

empty, then this means Γ2 (𝑟 ) is also empty, and we’re done. Otherwise, 𝑟 was garbage collected
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between Γ1 and Γ′1 . But then 𝑟 must be free in 𝑒2 for loans to have been added between Γ′1 and Γ′3 ,
which means the loan set could not have been emptied between Γ1 and Γ′1 , which is a contradiction.

□

Lemma E.21 (Outlives Preserves Related Environments). If Δ; Γ; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣ Γ𝑜 , and
Σ; Δ ⊢ Γ ▷ Γ′ and ⊢ Σ; Δ; Γ𝑜 ; Θ and Γ(𝜌1) = Γ′(𝜌1) and Γ(𝜌2) = Γ′(𝜌2), then Δ; Γ′; Θ ⊢𝜇 𝜌1 :>
𝜌2 ⊣ Γ′𝑜 , and Σ; Δ ⊢ Γ𝑜 ▷ Γ

′
𝑜 . and Γ𝑜 (𝜌1) = Γ′𝑜 (𝜌1) and Γ𝑜 (𝜌2) = Γ′𝑜 (𝜌2)

Proof. Proceed by induction on the outlives derivation. OL-Refl, OL-Trans, OL-
AbstractConcrete, and OL-BothAbstract are immediate.

OL-ConcreteAbstract follows from additionally applying Lemma E.16. The condition on the
place having the same type follows from the fact that 𝑝 is a loan and Γ′(𝑟 ) is not emptied, so we
could not have dropped the place.

OL-CheckConcrete is immediate, because the occurs before condition is unaffected since the
domains are equal, and the region not reborrowed judgement is unaffected by adding loans that
are already in other loan sets.
This leaves two cases which proceed similarly: OL-CombineConcrete and OL-

CombineConcreteUnrestricted.

OL-CombineConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb Γ; Θ ⊢ { 𝑟1 , 𝑟2 } clrs
𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)

Δ; Γ; Θ ⊢+ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

Since Γ′(𝑟1) = Γ(𝑟1) and Γ′(𝑟2) = Γ(𝑟2), Γ′(𝑟1) ∪ Γ′(𝑟2) = Γ(𝑟1) ∪ Γ′(𝑟2). The region not
reborrowed judgement is unaffected by adding loans that are already in other loan sets, so those
conditions are also still true. The rest of the conditions are immediate: the equality on 𝑟1 and 𝑟2’s
loan sets, the closure restriction since types are at most the same, and well formedness. □

Lemma E.22 (Related Environments Preserved by Region Rewriting). If Δ; Γ; Θ ⊢𝜇 𝜏 si1 {
𝜏 si2 ⊣ Γ𝑜 , and Σ; Δ ⊢ Γ ▷ Γ′ and ⊢ Σ; Δ; Γ𝑜 ; Θ and ∀𝑟 that occur in 𝜏 si1 or 𝜏 si2 , Γ(𝑟 ) = Γ′(𝑟 ), then
Δ; Γ′; Θ ⊢𝜇 𝜏 si1 { 𝜏 si2 ⊣ Γ′𝑜 , and Σ; Δ ⊢ Γ𝑜 ▷ Γ

′
𝑜 , and ∀𝑟 that occur in 𝜏 si1 or 𝜏 si2 , Γ𝑜 (𝑟 ) = Γ′𝑜 (𝑟 ).

Proof. Proceed by induction on the region rewriting derivation. The only interesting case is
RR-Reference, which proceeds by Lemma E.21 in addition to applying the induction hypothesis. □

Lemma E.23 (Expression Typing Preserved in Related Environments). Let 𝑒 be a surface
expression as defined on page 1. If Σ; Δ; Γ ♮ F ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ𝑜 ♮ F𝑜 and Σ; Δ ⊢ Γ ♮ F ▷ Γ′ ♮ F and

free-vars(𝑒) = 𝑥 𝑓 ⊆ dom(F )|𝑥 and ∀𝑟 ∈ free-regions(𝑒). 𝑟 ∈ dom(F ), and ∀𝑟 that occur a type in

F (𝑥 𝑓 ), Γ(𝑟 ) = Γ′(𝑟 ) then Σ; Δ; Γ′ ♮ F ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′𝑜 ♮ F𝑜 and Σ; Δ ⊢ Γ𝑜 ♮ F𝑜 ▷ Γ′𝑜 ♮ F𝑜 and ∀𝑟
that occur a type in F (𝑥 𝑓 ), Γ𝑜 (𝑟 ) = Γ′𝑜 (𝑟 ).

Proof. Proceed by induction on the typing derivation for 𝑒 . In the cases of T-Abort, T-Function,
T-Unit, T-u32, T-True, and T-False, the results are immediate.

In the cases of T-LetRegion, T-While, T-ForArray, T-ForSlice, T-Closure, T-Left, and T-Right, they
all follow immediately from induction hypotheses.

For each of the following cases, the convention is that the statement in the box is our assumption,
and we want to prove the same statement with Γ′ replaced for each Γ.
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T-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ♮ F𝑖−1; Θ , 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖 ♮ F𝑖

Σ; Δ; Γ0 ♮ F0; Θ ⊢ (𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛 ) ⇒ Γ𝑛 ♮ F𝑛
We have 𝑛 induction hypotheses, each giving us the properties for input context Γ′𝑖−1 ♮ F ′

𝑖−1 and
output context Γ′𝑖 ♮ F ′

𝑖 .
Given these resulting 𝑛 typing judgements, we get from applying T-Tuple that Σ; Δ; Γ′0 ♮ F0; Θ ⊢

(𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛 ) ⇒ Γ′𝑜 ♮ F ′
𝑜 , as well as the related environments judgement Σ; Δ ⊢

Γ𝑛 ♮ F𝑛 ▷ Γ′𝑛 ♮ F ′
𝑛 .

The cases for T-Array and T-Slice proceed identically. This reasoning is also used in the T-App
case.

T-Branch
Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒1 : bool ⇒ Γ1 ♮ F1 Σ; Δ; Γ1 ♮ F1; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2

Σ; Δ; Γ1 ♮ F1; Θ ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 ♮ F3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2 ♮ F2; Θ ⊢𝜇 𝜏si2 { 𝜏si ⊣ Γ2𝑠 ♮ F2𝑠

Δ; Γ3 ♮ F3; Θ ⊢𝜇 𝜏si3 { 𝜏si ⊣ Γ3𝑠 ♮ F3𝑠 Γ2𝑠 ♮ F2𝑠 ⋓ Γ3𝑠 ♮ F3𝑠 = Γ𝑜 ♮ F𝑜
Σ; Δ; Γ ♮ F; Θ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ𝑜 ♮ F𝑜

By our induction hypothesis we get that Σ; Δ; Γ′ ♮ F ; Θ ⊢ 𝑒1 : bool ⇒ Γ′1 ♮ F1, and
Σ; Δ; Γ′1 ♮ F1; Θ ⊢ 𝑒2 : bool ⇒ Γ′2 ♮ F2, and Σ; Δ; Γ′1 ♮ F1; Θ ⊢ 𝑒3 : bool ⇒ Γ′3 ♮ F3 with
Σ; Δ ⊢ Γ2 ♮ F2 ▷ Γ

′
2 ♮ F2 and Σ; Δ ⊢ Γ3 ♮ F3 ▷ Γ

′
3 ♮ F3.

Next we want to show that Δ; Γ′2 ♮ F2; Θ ⊢𝜇 𝜏si2 { 𝜏si ⊣ Γ′2𝑠 ♮ F2𝑠 , Σ; Δ ⊢ Γ2𝑠 ♮ F2𝑠 ▷ Γ′2𝑠 ♮ F2𝑠 ,
Δ; Γ′3 ♮ F3; Θ ⊢𝜇 𝜏si3 { 𝜏si ⊣ Γ′3𝑠 ♮ F3𝑠 , and Σ; Δ ⊢ Γ3𝑠 ♮ F3𝑠 ▷Γ

′
3𝑠 ♮ F3𝑠 , which all follow from applying

Lemma E.22. To do this lemma application, we just need to show that for all 𝑟 in 𝜏si1 , 𝜏
si
2 and 𝜏si,

Γ(𝑟 ) = Γ′(𝑟 ) which follows from the premise.
Finally, we need to show that Σ; Δ ⊢ Γ𝑜 ♮ F𝑜 ▷ Γ′𝑜 ♮ F𝑜 . The well formedness condition on Γ′𝑜

follows immediately since all types are the same as in Γ′2 and Γ′3 and the loan sets are just unioned,
meaning reference types remain valid and we can compute types for all loans.
The equal or empty condition follows from the fact that Γ′2 and Γ′3 both agree on types by

Lemma E.20, which means they drop exactly the same entries. For any regions emptied, either the
same regions are emptied, or the region was emptied in the corresponding smaller context Γ2 or Γ3.
Otherwise the loan sets are untouched.

Finally, both of these are preserved when adding on the same frame, so we’re done.

T-Match
Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒 : Either<𝜏si

𝑙
, 𝜏si𝑟 > ⇒ Γ1 ♮ F1 ∀𝑟 ∈ free-regions(Either<𝜏si

𝑙
, 𝜏si𝑟 >) . Γ1 ♮ F1 ⊢ 𝑟 rnrb

Σ; Δ; Γ1 ♮ F1 , 𝑥1 : 𝜏si
𝑙
; Θ ⊢ 𝑒1 : 𝜏si2 ⇒ Γ2 ♮ F2 , 𝑥1 : 𝜏sd

𝑙

Σ; Δ; Γ1 ♮ F1 , 𝑥2 : 𝜏si𝑟 ; Θ ⊢ 𝑒2 : 𝜏si3 ⇒ Γ3 ♮ F3 , 𝑥2 : 𝜏sd𝑟 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2 ♮ F2; Θ ⊢𝜇 𝜏si2 { 𝜏si ⊣ Γ2𝑠 ♮ F2𝑠

Δ; Γ3 ♮ F3; Θ ⊢𝜇 𝜏si3 { 𝜏si ⊣ Γ3𝑠 ♮ F3𝑠 Γ2𝑠 ♮ F2𝑠 ⋓ Γ3𝑠 ♮ F3𝑠 = Γ𝑜 ♮ F𝑜
Σ; Δ; Γ ♮ F; Θ ⊢ match 𝑒 { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } : 𝜏si ⇒ Γ𝑜 ♮ F𝑜

This case follows almost identically to the T-Branch case above. The only structural difference is
that the expression typing judgements for 𝑒1 and 𝑒2 have𝑥1 and𝑥2 respectively in their environments,
but we know we can remove 𝑥1 and 𝑥2 from each side and keep the contexts well formed, since
nothing that comes before 𝑥1 or 𝑥2 can refer to it, and we know that 𝜏si1 and 𝜏si2 cannot in any way
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refer to 𝑥1 or 𝑥2 because we have from the region rewriting judgements in the premises that the
types are well formed in Γ2 ♮ F2 and Γ3 ♮ F3 respectively. We also need to show that the region not
reborrowed judgement still holds, but this is immediate because at most Γ′1 has the same types as Γ1.

T-Let
Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 ♮ F1 Δ; Γ1 ♮ F1; Θ ⊢𝜇 𝜏si1 { 𝜏si𝑎 ⊣ Γ1𝑠 ♮ F1𝑠

∀𝑟 ∈ free-regions(𝜏si𝑎 ) . Γ1𝑠 ♮ F1𝑠 ⊢ 𝑟 rnrb
Σ; Δ; gc-loansΘ (Γ1𝑠 ♮ F1𝑠 , 𝑥 : 𝜏si𝑎 ) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2 , 𝑥 : 𝜏sd

Σ; Δ; Γ ♮ F; Θ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2

Firstly, we apply our induction hypothesis to get that 𝑒1 is well typed with input environment
Γ′ ♮ F and output environment Γ′1 ♮ F1 with Σ; Δ ⊢ Γ1 ♮ F1 ▷ Γ

′
1 ♮ F1. Then, we apply Lemma E.22

to get Σ; Δ ⊢ Γ1𝑠 ♮ F1𝑠 ▷ Γ′1𝑠 ♮ F1𝑠 . In order to apply this lemma we need to know that for any 𝑟

that occur in 𝜏si1 or 𝜏si𝑎 , Γ1 ♮ F1 (𝑟 ) = Γ′1 ♮ F1 (𝑟 ), which we have as a conclusion from the previous
application of the induction hypothesis.

The region not reborrowed judgement holds immediately, because at most Γ′1 has the same types
as Γ1.

To apply our induction hypothesis on 𝑒2 and continue the case, we need that
Σ; Δ ⊢ gc-loansΘ (Γ1𝑠 ♮ F1𝑠 , 𝑥 : 𝜏si𝑎 ) ▷ gc-loansΘ (Γ′1𝑠 ♮ F1𝑠 , 𝑥 : 𝜏si𝑎 ). But this is immediate by definition
since gcloans can only empty loan sets for regions for which there are no types that contain them,
which is allowed by R-Env.

Our final obligation to apply the induction hypothesis is that for any 𝑟 that occurs in a type
in F1𝑠 but is not in F1𝑠 , we need that gc-loansΘ (Γ1𝑠 ♮ F1𝑠 ) (𝑟 ) = gc-loansΘ (Γ′1𝑠 ♮ F1𝑠 ) (𝑟 ). We already
have that Γ1𝑠 ♮ F1𝑠 (𝑟 ) = Γ′1𝑠 ♮ F1𝑠 (𝑟 ), so we just need to know that ∃𝜋 : 𝜏 ∈ Γ1𝑠 , where 𝑟 occurs in 𝜏 ,
and Γ1𝑠 ♮ F1𝑠 (𝜋) = Γ1𝑠 ♮ F ′

1𝑠 (𝜋). But we said that 𝑟 is contained in a type in F1𝑠 , so the place for that
type is one such place, so we cannot empty the loan set.

T-Seq
Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ ♮ F1

Σ; Δ; gc-loansΘ (Γ1 ♮ F1) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2
Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2 ♮ F2

Firstly, we apply our induction hypothesis to get that 𝑒1 is well typed with input environment
Γ′ ♮ F and output environment Γ′1 ♮ F1, with Σ; Δ ⊢ Γ1 ♮ F1 ▷ Γ

′
1 ♮ F1. We need to know that Σ; Δ ⊢

gc-loansΘ (Γ1 ♮ F1) ▷ gc-loansΘ (Γ′1 ♮ F1) before we can apply our induction hypothesis to finish the
proof. But this fact is trivial by the definitions, since gc-loans can only empty regions that are not
in initialized types in the context, which is allowed in R-Env.
Our final obligation to apply the induction hypothesis is that for any 𝑟 that occurs in a type in

F1 but is not in F1, we need that gc-loansΘ (Γ1 ♮ F1) (𝑟 ) = gc-loansΘ (Γ′1 ♮ F1) (𝑟 ). We already have
that Γ1 ♮ F1 (𝑟 ) = Γ′1 ♮ F1 (𝑟 ), so we just need to know that ∃𝜋 : 𝜏 ∈ Γ1, where 𝑟 occurs in 𝜏 , and
Γ1 ♮ F1 (𝜋) = Γ′1 ♮ F1 (𝜋). But since 𝑟 occurs in a type in F1, the place that maps to that type is such a
place.

T-Drop
Γ (𝜋 ) = 𝜏si𝜋 Σ; Δ; (Γ ♮ F) [𝜋 ↦→ 𝜏si

†
𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑜 ♮ F𝑜

Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑜 ♮ F𝑜
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In order to apply our induction hypothesis and finish the case, we only need to show that
Σ; Δ ⊢ (Γ ♮ F )[𝜋 ↦→ 𝜏si

†
𝜋 ] ▷ (Γ′ ♮ F )[𝜋 ↦→ 𝜏si

†
𝜋 ], which is immediate by the definition of related

contexts. Note that (Γ′ ♮ F )[𝜋 ↦→ 𝜏si
†

𝜋 ] is well formed because (Γ ♮ F )[𝜋 ↦→ 𝜏si
†

𝜋 ] is well formed.
There cannot be any loans to 𝜋 because in the (Γ′ ♮ F )[𝜋 ↦→ 𝜏si

†
𝜋 ] because those loans would be

there in (Γ ♮ F )[𝜋 ↦→ 𝜏si
†

𝜋 ].

T-App
Σ; Δ; Γ ♮ F ⊢ Φ Δ; Γ ♮ F ⊢ 𝜌 Σ; Δ; Γ ♮ F ⊢ 𝜏si 𝛿 = · [Φ/𝜑 ] [𝜌/𝜚 ] [𝜏si/𝛼 ]
Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ𝑐→ 𝜏si

𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0 ♮ F0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1 ♮ F𝑖−1; Θ , 𝛿 (𝜏si1 ) . . . 𝛿 (𝜏si𝑖−1) ⊢ 𝑒𝑖 : 𝛿 (𝜏si𝑖 ) ⇒ Γ𝑖 ♮ F𝑖
∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ𝑛 ♮ F𝑛 ⊢ 𝑟 rnrb Δ; Γ𝑛 ♮ F𝑛 ; Θ ⊢ 𝜚2 [𝜌/𝜚 ] :> 𝜚1 [𝜌/𝜚 ] ⊣ Γ𝑏 ♮ F𝑏

Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
[Φ/𝜑 ] [𝜌/𝜚 ] [𝜏si/𝛼 ] ⇒ Γ𝑏 ♮ F𝑏

In the case of T-App, we firstly must prove the well formedness properties:

• Σ; Δ; Γ′ ♮ F ⊢ Φ. Since Δ is unchanged, WF-Env is the only interesting case.

WF-Env
Σ; Δ ⊢ Γ ♮ F ♮ F𝑐
Σ; Δ; Γ ♮ F ⊢ F𝑐

Let Φ = F𝑒 . We want to show that ⊢ Σ; Δ; Γ′ ♮ F ♮ F𝑐 ; Θ given ⊢ Σ; Δ; Γ ♮ F ♮ F𝑐 ; Θ, which
is immediate from Lemma E.19.

• Δ; Γ′ ♮ F ⊢ 𝜌 , which is immediate from the premises since related loan environments have
the same domains and Δ is the same.

• Σ; Δ; Γ′ ♮ F ⊢ 𝜏si, which is immediate from Lemma E.18. We just need that for the regions
that occur in the type, their loan sets are unchanged, but we get that from the premise,
because the function argument is either: locally defined, in which case it can only use and
produce types accessible in the context; an argument, in which case its arguments are also
part of the argument type; or a global function, in which case these types do not contain
any non abstract regions which are replaced with concrete regions all in F .

For the rest of the application case, we can apply our induction hypothesis on the function and
the arguments, additionally applying the substitution lemma, Lemma E.2, where needed. The region
not reborrowed condition is true by the fact that at most the types between Γ𝑛 and Γ′𝑛 are the same.
The last part about outlives follows from Lemma E.21, where we have the condition on the loan
sets from the conclusion of the application of the induction hypothesis.

T-AppClosure
Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒𝑓 : ∀<> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ𝑐→ 𝜏si

𝑓
⇒ Γ0𝑠 ♮ F0𝑠

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1𝑠 ♮ F𝑖−1𝑠 ; Θ , 𝜏si1 . . . 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si
𝑖′ ⇒ Γ𝑖 ♮ F𝑖 Δ; Γ𝑖 ♮ F𝑖 ; Θ ⊢⊞ 𝜏si

𝑖′ { 𝜏si𝑖 ⊣ Γ𝑖𝑠 ♮ F𝑖𝑠
∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ𝑛𝑠 ♮ F𝑛𝑠 ⊢ 𝑟 rnrb

Σ; Δ; Γ ♮ F; Θ ⊢ 𝑒𝑓 (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
⇒ Γ𝑛𝑠 ♮ F𝑛𝑠

In the case of T-AppClosure, we follow a very similar procedure to T-AppFunction, but with an
empty substituion, and the addition that we need to apply Lemma E.22 to handle the rewriting.
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In the cases of T-Move, T-Copy, T-Borrow, T-BorrowIndex, T-BorrowSlice, IndexCopy, they all
follow from the induction hypothesis and additionally applying Lemma E.17 and Lemma E.16. Note
we get the place having the right type requirement for T-Move from the fact that the place must be
in F since it is a free variable.
The remaining cases of T-Assign and T-AssignDeref proceed similarly. Firstly, we apply the

induction hypothesis on the expression, then Lemma E.17 and Lemma E.16, and finally we get well
formedness and relatedness on the output environment by applying Lemma E.22. Note we get the
place having the same type requirement for type computation from the fact that the place must be
in F since it is a free variable.

□

Lemma E.24 (Referent Well Formedness Preserved in Related Environments). If Σ; Δ ⊢
Γ ▷ Γ′ and Σ; Γ ⊢ R□ [𝜋] : 𝜏xi and Γ(𝜋) = Γ′(𝜋), then Σ; Γ′ ⊢ R□ [𝜋] : 𝜏xi.

Proof. Proceed by induction on the referent validity derivation. The only case that doesn’t
follow immediately from premises and the induction hypothesis in WF-RefId, which follows from
the equal types premise. □

Lemma E.25 (Value Typing Preserved in Related Environments). If Σ; • ⊢ Γ ▷ Γ′, and
Σ; •; Γ; • ⊢ 𝑣 : Γ(𝑥) ⇒ Γ, then Σ; •; Γ′; • ⊢ 𝑣 : Γ′(𝑥) ⇒ Γ′.

Proof. Proceed by simultaneous induction on the typing derivation and the stack frame well
formedness. Since we know the expression is already a value, we restrict ourselves only to those
cases that type values: T-Unit, T-u32, T-True, T-False, T-Tuple, T-Array, T-Left, T-Right, T-Dead,
T-Pointer, and T-ClosureValue.

For T-Unit, T-u32, T-Dead, T-True, and T-False, this holds trivially. For T-Tuple, T-Array, T-Left,
and T-Right, this holds directly by repeated application of our induction hypothesis. This leaves us
with four cases.

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐 ) |var

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 ))) = dom(F𝑐 ) |rgn
Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ

For the T-ClosureValue case, firstly we want to show Σ; Γ′ ⊢ 𝜍 : F𝑐 . This follows immediatedly
from applying the induction hypothesis for each value.

Then to finish the closure case, it suffices to show
Σ; •; Γ′ ♮ F𝑐 ; • ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′𝑜 ♮ F , which follows immediately from Lemma E.23.

T-Pointer
Σ; Γ ⊢ R□ [𝜋 ] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟 )

Σ; Δ; Γ; Θ ⊢ ptr R□ [𝜋 ] : &𝑟 𝜔 𝜏xi ⇒ Γ

If 𝑥 was dropped, then Γ′(𝑥) = Γ(𝑥)†. Then the proof follows immediately from T-Dead.
If 𝑥 was not dropped, then Γ(𝑥) = Γ′(𝑥). All that is left to show is that that the referent remains

well formed, and the loan 𝜔𝜋 is in Γ′(𝑟 ). The first condition follows from Lemma E.24. The second
condition is immediate because the only potential changes allowed in the related environment
to loan sets is emptying the loan sets of regions if there’s no references with the region in their
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type, and this particular reference is a reference with the region, so emptying the loan set is ruled
out. □

Lemma E.26 (Value Typing Fixed on Output Environments). If Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ′,
then Σ; Δ; Γ′; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ′.

Proof. Immediate by induction on the typing derivation. The only non immediate case is
T-Pointer, where we also need to apply Lemma E.24. □

Lemma E.27 (Stack Validity is Preserved in Related Environments). If Σ ⊢ 𝜎 : Γ and

Σ; • ⊢ Γ ▷ Γ′, then Σ ⊢ 𝜎 : Γ′.

Proof. We proceed by induction over the well typedness of the store.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

WF-StackEmpty

Σ ⊢ • : •

The interesting case is when the stack is non empty. Then we have that Σ ⊢ 𝜎 : Γ′ and want
to show that Σ ⊢ 𝜎 ♮ 𝜍 : Γ′ ♮ F . The requirement on the domain is immediate since related
environments have the same domains. What’s left to show is that the values in the store remain
well typed under the new environment. This follows from repeated applications of Lemma E.25 □

E.5 Preservation When Popping a Stack Frame Lemmas
Lemma E.28 (Stack Validity is Preserved When Popping A Stack Frame). If Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F ,

then Σ ⊢ 𝜎 : Γ.

Proof. Immediate by inversion on WF-StackFrame which gives us Σ ⊢ 𝜎 : Γ. □

E.6 Preservation under Well Typed Extension Lemmas
Lemma E.29 (Ownership Safety is Preserved under Well-Typed Extensions). If
(1) Σ; •; Γ ♮ F ⊢ 𝜏 si𝑥
(2) •; Γ ♮ F ; Θ ⊢𝜋𝜔 𝑝 ⇒ { ℓ }
(3) root-of(𝑝) ∈ dom(F )
(4) ∀𝑟 ∈ free-regions(𝜏 si𝑥 ). Γ ⊢ 𝑟 rnrb
(5) ∀𝑟 ∈ free-regions(𝜏 si𝑥 ). ∀𝜋𝑖 ∈ { 𝜋 }. Γ(𝜋𝑖 ) = &𝑟 ′′ 𝜔 𝜏xi =⇒ 𝑟 ′′ ≠ 𝑟

then •; Γ , 𝑥 : 𝜏 si𝑥 ♮ F ; Θ ⊢𝜋𝜔 𝑝 ⇒ { ℓ }.

Proof. We proceed by induction on the ownership safety derivation.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

We’d like to apply O-SafePlace to show •; Γ , 𝑥 : 𝜏si𝑥 ♮ F ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }. Let 𝑟 ′ ↦→ { ℓ } ∈ Γ.
Note that necessarily 𝑟 ′ ↦→ { ℓ } ∈ Γ , 𝑥 : 𝜏si𝑥 .



1:62 Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed

If ∀𝜔′
𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨ 𝜔 ′ = uniq) =⇒ 𝜋 ′ #𝜋 held in our original Γ, then it still

holds in the extended typing Γ , 𝑥 : 𝜏si𝑥 ♮ F since the loan sets are unchanged between the two
stack typings.

Otherwise, we must have used the second clause ∃𝜋 ′ : &𝑟 ′ 𝜔 ′ 𝜏 ′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔 ′ 𝜏 ′ ∈
Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔 ′ 𝜏 ′ ∈ explode(Γ). 𝜋 ′ ∈ { 𝜋𝑒 }) in the first place. To show that this is still true,
we need to show that nothing in our newly-bound 𝑥 shares a type with a reborrowed reference
which would end up in our exclusion list. The reason for this is that the failure condition for this is
that with such a reference now bound at (or reachable within) 𝑥 , we could violate the universally-
quantified portion of this clause. Fortunately, we have from our premise that all the regions that
appear in the type 𝜏si𝑥 are distinct from the ones in the exclusion list (∀𝑟 ∈ free-regions(𝜏si𝑥 ). ∀𝜋𝑖 ∈
{ 𝜋 }. Γ(𝜋𝑖 ) = &𝑟 ′′ 𝜔 𝜏xi =⇒ 𝑟 ′′ ≠ 𝑟 ). Thus, we know this cannot be the case.

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

We’d like to apply O-Deref to show •; Γ , 𝑥 : 𝜏si𝑥 ♮ F ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }. This requires us to
show (Γ , 𝑥 : 𝜏si𝑥 ♮ F )(𝜋) = &𝑟 𝜔𝜋 𝜏𝜋 and (Γ , 𝑥 : 𝜏si𝑥 ♮ F )(𝑟 ) = { 𝜔′

𝑝
𝑛
}. The former follows from

the disjointedness assumption for 𝑥 , i.e. that 𝑥 is disjoint from all existing identifiers in Γ. The latter
follows from the fact that no loan sets are changed between the two stack typings. Since the loan
set is unchanged, we also have that the new extension for the exclusion list excl is the same. This
leaves us with two pieces to show. First, that the recursive uses of ownership safety still succeed
(for which we will use the induction hypothesis) and that our last obligation holds (which follows
much as it did for O-SafePlace).

For the inductive cases, we can very nearly just apply the induction hypothesis, but we first must
show that our exclusion list invariant applies for the extensions to the exclusion list. That is, we
have that ∀𝑟 ∈ free-regions(𝜏si𝑥 ). ∀𝜋𝑖 ∈ {𝜋𝑒 }. Γ(𝜋𝑖 ) = &𝑟 ′′𝜔 𝜏xi =⇒ 𝑟 ′′ ≠ 𝑟 , and we need to show
∀𝑟 ∈ free-regions(𝜏si𝑥 ). ∀𝜋𝑖 ∈ { excl , 𝜋 }. Γ(𝜋𝑖 ) = &𝑟 ′′ 𝜔 𝜏xi =⇒ 𝑟 ′′ ≠ 𝑟 . The exclusion extension
excl is constructed by looking specifically at the reborrow loans associated with the region 𝑟 .
Since we know that ∀𝑟 ∈ free-regions(𝜏si𝑥 ). ∀𝜋 : &𝑟 𝜔 𝜏xi ∈ explode(Γ). �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ(𝑟 ′) (from
inversion of NRB-Region), it follows directly that none of the places in excl can have a reference
type with an region in 𝜏si𝑥 . If they did, that would mean syntactically that Γ(𝑟 ) contains a loan for
∗𝜋 which would give us a contradiction.
For the last obligation, let 𝑟 ′ ↦→ { ℓ } ∈ Γ. Note that necessarily 𝑟 ′ ↦→ { ℓ } ∈ Γ , 𝑥 : 𝜏si𝑥 .
If ∀𝜔′

𝑝 ′′ ∈ { ℓ }.(𝜔 = uniq ∨ 𝜔 ′ = uniq) =⇒ 𝑝 ′′ #𝑝□ [∗𝜋] held in our original Γ, then it still
holds in the extended typing Γ , 𝑥 : 𝜏si𝑥 ♮ F since the loan sets are unchanged between the two
stack typings.

Otherwise, we must have used the second clause ∃𝜋 ′ : &𝑟 ′ 𝜔 ′ 𝜏 ′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔 ′ 𝜏 ′ ∈
Θ ∧ (∀𝜋 ′ : &𝑟 ′𝜔 ′ 𝜏 ′ ∈ explode(Γ). 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }) in the first place. To show that this is still
true, we need to show that nothing in our newly-bound 𝑥 shares a type with a reborrowed reference
which would end up in our exclusion list. The reason for this is that the failure condition for this is
that with such a reference now bound at (or reachable within) 𝑥 , we could violate the universally-
quantified portion of this clause. Fortunately, we have from our premise that all the regions that
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appear in the type 𝜏si𝑥 are distinct from the ones in the exclusion list (∀𝑟 ∈ free-regions(𝜏si𝑥 ). ∀𝜋𝑖 ∈
{ 𝜋 }. Γ(𝜋𝑖 ) = &𝑟 ′′ 𝜔 𝜏xi =⇒ 𝑟 ′′ ≠ 𝑟 ). Thus, we know this cannot be the case.

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

Since Δ = •, there are no valid reference types that have an abstract region, meaning the first
hypothesis is a contradiction. □

Lemma E.30 (Type Computation is Preserved underWell-Typed Extensions). If Σ; •; Γ ⊢ 𝜏 si𝑥
and •; Γ ⊢𝜔 𝑝 : 𝜏, { 𝜌 } then •; Γ , 𝜏 si𝑥 ⊢𝜔 𝑝 : 𝜏, { 𝜌 }.

Proof. We proceed by induction on the type computation. This gives us three cases, TC-Var,
TC-Proj and TC-Deref. In TC-Var, the lookup yields the same type based on the assumption that
our new binding is disjoint from our existing ones. TC-Proj and TC-Deref proceed directly from the
induction hypothesis. □

Lemma E.31 (Outlives is Preserved under Well-Typed Extensions). If Σ; •; Γ ⊢ 𝜏 si𝑥 and

∀𝑟 ∈ free-regions(𝜏 si𝑥 ). Γ ⊢ 𝑟 rnrb and •; Γ; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣ Γ′ then •; Γ , 𝑥 : 𝜏 si𝑥 ; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣
Γ′ , 𝑥 : 𝜏 si𝑥
Proof. We proceed by induction on the outlives judgment. This gives us six cases, OL-Refl, OL-

Trans, OL-BothAbstract, OL-CombineConcrete, OL-ConcreteAbstract and OL-AbstractConcrete.
OL-Refl, OL-BothAbstract and OL-AbstractConcrete are immediate.
OL-Trans follows from the induction hypothesis.
OL-ConcreteAbstract follows from the induction hypothesis and Lemma E.30.
This leaves OL-CombineConcrete as the most interesting case. Here we use ∀𝑟 ∈

free-regions(𝜏si𝑥 ). Γ ⊢ 𝑟 rnrb from our premise and note that since this holds for arbitrary re-
gions 𝑟 , we know that it holds for both 𝑟1 and 𝑟2 in the premise of OL-CombineConcrete and thus
we are done. □

Lemma E.32 (Region Rewriting is Preserved under Well-Typed Extensions). If Σ; •; Γ ⊢ 𝜏 si𝑥
and ∀𝑟 ∈ free-regions(𝜏 si𝑥 ). Γ ⊢ 𝑟 rnrb and •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ then •; Γ , 𝑥 : 𝜏 si𝑥 ; Θ ⊢𝜇 𝜏1 {
𝜏2 ⊣ Γ′ , 𝑥 : 𝜏 si𝑥 .

Proof. We proceed by induction on the region rewriting judgment. This gives us seven cases,
RR-Refl, RR-Trans, RR-Array, RR-Slice, RR-Reference, RR-Tuple, and RR-Dead.

RR-Refl is immediate.
RR-Trans, RR-Array, RR-Slice, RR-Tuple and RR-Dead all follow directly from the induction

hypothesis.
This leaves RR-Reference which follows from Lemma E.31 and the induction hypothesis. □

Lemma E.33 (Closure Bodies areWell-Typed underWell-Typed Extensions). If Σ; •; Γ ⊢ 𝜏 si𝑥
and ∀𝑟 ∈ free-regions(𝜏 si𝑥 ). Γ ⊢ 𝑟 rnrb and Σ; •; Γ ♮ F ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ′ ♮ F ′

, then

Σ; •; Γ , 𝑥 : 𝜏 si𝑥 ♮ F ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ′ , 𝑥 : 𝜏 si𝑥 ♮ F ′
and ∀𝑟 ∈ free-regions(𝜏 si𝑥 ). ∀𝜋 : &𝑟 𝜔 𝜏xi ∈

explode(Γ′). �𝑟 ′. 𝜔 ∗𝜋 ∈ Γ′(𝑟 ′).

Proof. We proceed by induction on the typing derivation.
T-Function, T-Abort, T-Unit, T-u32, T-True, T-False, and T-Dead are all immediate.
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T-LetRegion, T-While, T-ForArray, T-ForSlice, T-Closure, T-Tuple, T-Slice, T-Drop, T-Left, T-Right,
and T-Shift, T-Framed, and T-ClosureValue all follow directly from the induction hypothesis.
For T-Move, T-Copy, T-Borrow, T-BorrowIndex, T-BorrowSlice, and T-IndexCopy, we rely on

Lemma E.29 and the induction hypothesis for almost all of our obligations. For all of them except
T-Move, we also have to show that the type computation for 𝑝 still works in the extended stack
typing. This follows from Lemma E.30.
For T-Branch and T-Match, we use the induction hypothesis in conjunction with Lemma E.32

to get most of the premises. In the end, we also need to deal with the union between the output
environments from the two region rewriting derivations. Fortunately, we know that by definition
this operation unions corresponding loan sets for the same region and as such creates no new loans
leaving our not-reborrowed property intact.

T-Seq proceeds almost directly based on just the induction hypothesis, but with the required note
that garbage collecting loans can only remove loans and thus leaves our not-reborrowed property
intact. T-Let follows similarly to T-Seq but also requires the use of Lemma E.32.

T-Assign and T-AssignDeref follow from the induction hypothesis combined with Lemma E.32
and Lemma E.29.

T-App follows from the induction hypothesis and Lemma E.31.
T-Pointer follows from Lemma E.30. □

Lemma E.34 (Values are Well-Typed under Well-Typed Extensions). If Σ; •; Γ ⊢ 𝜏 si𝑥 and

∀𝑟 ∈ free-regions(𝜏 si𝑥 ). Γ ⊢ 𝑟 rnrb and Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ, then Σ; •; Γ , 𝑥 : 𝜏 si𝑥 ; Θ ⊢ 𝑣 :
𝜏 si ⇒ Γ , 𝑥 : 𝜏 si𝑥 .

Proof. We proceed by induction on the typing derivation. The only non-immediate case is
T-ClosureValue.

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐 ) |var

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 ))) = dom(F𝑐 ) |rgn
Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ

First, we invert the stack frame typing hypothesis to get that ∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F𝑐 ; Θ ⊢
𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐 . We can apply the induction hypothesis to each of these statements, and
apply WF-Frame to get Σ; Γ , 𝑥 : 𝜏si𝑥 ⊢ 𝜍𝑐 : F𝑐 .

Next, we need to show that Σ; •; Γ , 𝑥 : 𝜏si𝑥 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′′ ♮ F ′

for some Γ′′ and F ′. We get this by applying Lemma E.33 to Σ; •; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢
𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F ′ (from the premise of T-ClosureValue). □

Lemma E.35 (Stack Validity is Preserved under Well-Typed Extensions). If Σ ⊢ 𝜎 : Γ and

∀𝑟 ∈ free-regions(𝜏 si𝑥 ). Γ ⊢ 𝑟 rnrb and Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ, then Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 : Γ , 𝑥 : 𝜏 si.

Proof. This proof follows directly from the definition of WF-StackFrame.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F
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In particular, inversion of WF-StackFrame on Σ ⊢ 𝜎 : Γ gives us well-formedness for the remainder
of the stack, dom(𝜍) = dom(F )|𝑥 and ∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F ; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F )(𝑥) ⇒
Γ ♮ F . We can then apply Lemma E.34 to each of these derivations to get ∀𝑥 ∈ dom(𝜍 , 𝑥 ↦→
𝑣). Σ; •; Γ ♮ F , 𝑥 : 𝜏si; • ⊢ (𝜍 , 𝑥 ↦→ 𝑣) (𝑥) : (Γ ♮ F , 𝑥 : 𝜏si) (𝑥) ⇒ Γ ♮ F , 𝑥 : 𝜏si. We can then
see that the well-formedness of the remainder of the stack is unaffected, and that the domains when
extended with 𝑥 remain equal. The last obligation is to show that the 𝑣 is well-typed in the current
stack typing, but we already have that from our premise. Thus, we can apply WF-StackFrame with
the extended stack to get Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 : Γ , 𝑥 : 𝜏si. □

E.7 Preservation after Assignment Lemmas
Lemma E.36 (Ownership Safety is Preserved after Assignment). If Γ(𝜋𝑎) = 𝜏 sx and Δ; Γ ▷−

∗𝜋𝑎 ; Θ ⊢= 𝜏 si { 𝜏 sx ⊣ Γ′ and 𝜏 sx is unique to 𝜋𝑎 in Γ and •; Γ ♮ F ; Θ ⊢𝜋𝑜𝜔 𝑝 ⇒ { ℓ } and { 𝜋𝑛 } =

{ 𝜋𝑜 } \ 𝜋𝑎 , then •; gc-loansΘ (Γ′[𝜋𝑎 ↦→ 𝜏 si]) ♮ F ; Θ ⊢𝜋𝑛𝜔 𝑝 ⇒ { ℓ ′ }.

Proof. We proceed by induction on the ownership safety derivation.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

Consider an arbitrary region 𝑟 from the domain of Γ ♮ F . For this 𝑟 , we wish to show that either
of the two clauses in O-SafePlace which were previously true are maintained after going through
Δ; Γ▷− ∗𝜋𝑎 ; Θ ⊢= 𝜏si { 𝜏sx ⊣ Γ′ and gc-loansΘ (·), which kills loans prefixed by ∗𝜋 , checks that the
new type for 𝜋𝑎 is compatible with its old type, and clears out loans associated with its outermost
region. So, we will consider each clause as a separate case.
We will first consider the case where we have ∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨ 𝜔 ′ = uniq) =⇒
𝜋 ′ #𝜋 . In this case, we know by definition of ▷− that ∀𝑟 ∈ dom(Γ). (Γ ▷− ∗𝜋𝑎) (𝑟 ) ⊆ Γ(𝑟 ). We then
know, again by definition (see OL-CheckConcrete), that ∀𝑟 ∈ dom(Γ). (Γ▷− ∗𝑝) (𝑟 ) = Γ′(𝑟 ). As such,
we know that the ▷− and gc-loansΘ (·) has at most shrank the obligations in this case to having
fewer disjointedness obligations, and it is otherwise unchanged.

This leaves us to consider the second case ∃𝜋 ′ : &𝑟 ′𝜔 ′𝜏 ′ ∈ explode(Γ) ∧ �&𝑟 ′𝜔 ′𝜏 ′ ∈ Θ ∧(∀𝜋 ′ :
&𝑟 ′ 𝜔 ′ 𝜏 ′ ∈ explode(Γ). 𝜋 ′ ∈ { 𝜋𝑒 }). Recall that, definitionally, neither ▷− nor the region rewriting
judgment change variable bindings and their associated types in the environment (instead both
affect only the loan sets associated with regions, though the latter does not when run in the checking
mode =). Thus, we know that explode(Γ) = explode(Γ′). We then need to consider two distinct
possibilities for how the exclusion list has changed.We know from the premise that {𝜋𝑛 } = {𝜋𝑜 }\𝜋𝑎
which means that either the two sets are exactly identical (when 𝜋𝑎 ∉ { 𝜋𝑜 }) or smaller by 𝜋𝑎 in
particular (when 𝜋𝑎 ∈ { 𝜋𝑜 }). In the former case, the exclusion list is unchanged which means the
whole clause is true for every 𝑟 ′ in Γ′ for which it was true in Γ. In the latter case, the regions 𝑟 ′ is
in the type of 𝜋𝑎 which has been removed from the exclusion list { 𝜋𝑛 }. Thus, we need to show for
the loans { ℓ } associated with 𝑟 ′ that ∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨ 𝜔 ′ = uniq) =⇒ 𝜋 ′ #𝜋 . By
definition, 𝜏sx is unique to 𝜋 in Γ tells us that the outermost region 𝑟 ′ is unique to the type 𝜏sx and
place 𝜋𝑎 , and thus when we replace it with 𝜏si, we ensure that 𝑟 ′ does not occur in any type in Γ′.
Thus, the surrounding call of gc-loansΘ (·) necessarily clears out the loan set meaning that the set
associated with 𝑟 ′ is always empty in new environment, meaning the disjointness condition from
O-SafePlace holds trivially.
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O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

We want to produce a new derivation using O-Deref for •; Γ ▷− ∗𝜋𝑎 ♮ F ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋] ⇒ { ℓ ′′ }.
We have (Γ ♮ F )(𝜋) = &𝑟 𝜔𝜋 𝜏𝜋 from the premise of O-Deref. We then know by the definition of ▷−
that (Γ ▷− ∗𝜋𝑎 ♮ F )(𝜋) = &𝑟 𝜔𝜋 𝜏𝜋 since ▷− only affects the loan set portion of the codomain of its
input environment. We also know from the premise of O-Deref that (Γ ♮ F )(𝑟 ) = { 𝜔′

𝑝
𝑛
}. Again,

by the definition of ▷− , we have that (Γ ▷− ∗𝜋𝑎 ♮ F )(𝑟 ) = { 𝜔𝑘
𝑝𝑘

𝑚

} where we know𝑚 ≤ 𝑛 and
{ 𝜔𝑘

𝑝𝑘
𝑚

} ⊆ { 𝜔′
𝑝
𝑛
}.

We know by the definition of ▷− also that every place expression 𝑝𝑑 in { 𝜔′
𝑝
𝑛
} \ { 𝜔𝑘

𝑝𝑘
𝑚

} can
be decomposed into 𝑝□

𝑑
[∗𝜋𝑎]. This means that for computing the set excl, it is either the same or

has shrunk by precisely 𝜋𝑎 . This lines up with our induction hypothesis which we apply to each of
∀𝑖 ∈ { 1 . . . 𝑛 }. •; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝 ′

𝑖
} from the premise of O-Deref. This gives us

∀𝑖 ∈ { 1 . . . 𝑛 }. •; Γ ▷− ∗𝜋𝑎 ; Θ ⊢𝜋𝑒 , excl , 𝜋𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝 ′′
𝑖

}.
Finally, for the last premise of O-Deref, the proof precedes identically to the case for O-SafePlace

since the obligation is exactly the same.

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

Since Δ = •, there are no valid reference types that have an abstract region, meaning the first
hypothesis is a contradiction. □

Lemma E.37 (Outlives is Preserved after Assignment). If Γ(𝜋𝑎) = 𝜏 sx and Δ; Γ ▷− ∗𝜋𝑎 ; Θ ⊢=
𝜏 si { 𝜏 sx ⊣ Γ′ and •; Γ; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣ Γ𝑜 , then •; Γ′; Θ ⊢𝜇 𝜌1 :> 𝜌2 ⊣ Γ′𝑜 .

Proof. We proceed by induction on the outlives judgment. This gives us seven cases, OL-Refl,
OL-Trans, OL-BothAbstract, OL-CombineConcrete, OL-CombineConcrete, OL-ConcreteAbstract
and OL-AbstractConcrete.

OL-Refl, OL-BothAbstract and OL-AbstractConcrete are immediate.
OL-Trans follows from the induction hypothesis.
OL-ConcreteAbstract follows from the induction hypothesis and noting that the type computa-

tion does not depend on the contents of loan sets.
This leaves OL-CombineConcreteUnrestricted, OL-CombineConcrete and OL-CheckConcrete as

the most interesting cases. We note that the checking mode = corresponds to making no changes to
the environment, thus Γ′ = Γ ▷− ∗𝜋𝑎 . Then, for each, we note that the value of each associated loan
set in the input environment only has an effect on the output environment and not whether or not
the rule applies. Thus, since we know that Γ′ (compared to Γ) has had some loans removed (those
rooted at ∗𝜋𝑎), then we can still produce a derivation, only with a different, potentially smaller
output. □
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Lemma E.38 (Region Rewriting is Preserved after Assignment). If Γ(𝜋𝑎) = 𝜏 sx and Δ; Γ ▷−
∗𝜋𝑎 ; Θ ⊢= 𝜏 si { 𝜏 sx ⊣ Γ′ and •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ𝑜 , then •; Γ′; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′𝑜 .

Proof. We proceed by induction on the region rewriting judgment. This gives us seven cases,
RR-Refl, RR-Trans, RR-Array, RR-Slice, RR-Reference, RR-Tuple, and RR-Dead.

RR-Refl is immediate.
RR-Trans, RR-Array, RR-Slice, RR-Tuple and RR-Dead all follow directly from the induction

hypothesis.
This leaves RR-Reference which follows from Lemma E.37 and the induction hypothesis. □

Lemma E.39 (Expressions are Well-Typed after Assignment). If Γ(𝜋𝑎) = 𝜏 sx and Δ; Γ ▷−
∗𝜋𝑎 ; Θ ⊢= 𝜏 si { 𝜏 sx ⊣ Γ′ and •; Γ′;Θ ⊢uniq 𝜋𝑎 ⇒ { uniq𝜋𝑎 } and Σ; •; Γ ♮ F ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ𝑜 ♮ F ′

,

then Σ; •; gc-loansΘ (Γ′[𝜋𝑎 ↦→ 𝜏 si]) ♮ F ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ′𝑜 [𝜋𝑎 ↦→ 𝜏 si] ♮ F ′′
.

Proof. We proceed by induction on the typing derivation.
T-Function, T-Abort, T-Unit, T-u32, T-True, T-False, and T-Dead are all immediate.
T-Seq, T-LetRegion, T-While, T-ForArray, T-ForSlice, T-Closure, T-Tuple, T-Slice, T-Drop, T-Left,

T-Right, and T-Shift, T-Framed, and T-ClosureValue all follow directly from the induction hypothesis.
For T-Move, T-Copy, T-Borrow, T-BorrowIndex, T-BorrowSlice, and T-IndexCopy, we rely on

Lemma E.36 and the induction hypothesis for almost all of our obligations. For all of them except T-
Move, we also have to show that the type computation for 𝑝 still works in the updated environment.
Since we know that 𝜋𝑎 is ownership safe from our premise, we know that 𝑝 is disjoint from 𝜋𝑎 and
thus the type update could not affect its type computation. Otherwise, the only difference is in loan
sets associated with regions, and thus does not affect type computation.

T-Pointer requires the same argument about type computation as in T-Borrow, but does not
need the additional lemmas or the induction hypothesis.

For T-Branch and T-Match, we use the induction hypothesis in conjunction with Lemma E.38 to
get most of

the premises. In the end, we also need to deal with the union between the output environments
from the two rewriting derivations. Fortunately, we know that by definition this operation unions
corresponding loan sets for the same region and so commutes with gc-loansΘ (·) and the type
update.

T-Let follows similarly to T-Branch and T-Match using the induction hypothesis in conjunction
with Lemma E.38 without the need to address a combined environment.

T-Assign and T-AssignDeref follow from the induction hypothesis combined with Lemma E.38
and Lemma E.36.

T-App follows from the induction hypothesis and Lemma E.37. □

Lemma E.40 (Values areWell-Typed after Assignment). If Γ(𝜋𝑎) = 𝜏 sx and Δ; Γ▷− ∗𝜋𝑎 ; Θ ⊢=
𝜏 si { 𝜏 sx ⊣ Γ′ and •; Γ′; Θ ⊢uniq 𝜋𝑎 ⇒ { uniq𝜋𝑎 } and Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏 ⇒ Γ, then
Σ; •; gc-loansΘ (Γ′[𝜋𝑎 ↦→ 𝜏 si]); Θ ⊢ 𝑣 : 𝜏 ⇒ gc-loansΘ (Γ′[𝜋𝑎 ↦→ 𝜏 si]).

Proof. We proceed by induction on the value typing derivation. The only non-immediate cases
are T-Pointer and T-ClosureValue.

T-Pointer
Σ; Γ ⊢ R□ [𝜋 ] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟 )

Σ; Δ; Γ; Θ ⊢ ptr R□ [𝜋 ] : &𝑟 𝜔 𝜏xi ⇒ Γ
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In T-Pointer, we have a requirement that 𝜔𝜋 ∈ Γ(𝑟 ) which could potentially be affected by the
kill rules. However, note that the definition of ▷− is such that we only remove loans of the form
∗𝜋𝑎 which necessarily cannot match this loan which has no dereference in it. Thus, we know that
𝜔𝜋 ∈ (Γ ▷− ∗𝜋) (𝑟 ) and thus, Σ; •; Γ ▷− ∗𝜋𝑎 ; Θ ⊢ ptr R□ [𝜋] : 𝜏si ⇒ Γ ▷− ∗𝜋𝑎 . We then know that
the checking mode = for rewriting does not change the output environment, and thus, Γ′ = Γ▷− ∗𝜋𝑎 .
Then, we know that 𝜋 ≠ 𝜋𝑎 (this would otherwise conflict with the ownership safety derivation
for 𝜋𝑎 in our premise), so the type update for 𝜋𝑎 does not impact T-Pointer. Finally, the call to
gc-loansΘ (·) clears out any unused regions, but the region 𝑟 here is still in use and thus not changed.

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐 ) |var

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 ))) = dom(F𝑐 ) |rgn
Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ

First, we invert the stack frame typing hypothesis to get that ∀𝑥 ∈ dom(𝜍). Σ; •; Γ ♮ F𝑐 ; Θ ⊢
𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐 . We can apply the induction hypothesis to each of these statements, and
apply WF-Frame to get Σ; gc-loansΘ (Γ′[𝜋𝑎 ↦→ 𝜏si]) ⊢ 𝜍𝑐 : F𝑐 .
Next, we need to show that Σ; •; gc-loansΘ (Γ′[𝜋𝑎 ↦→ 𝜏si]) ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢

𝑒 : 𝜏si𝑟 ⇒ Γ′′ ♮ F ′ for some Γ′′ and F ′. We get this by applying Lemma E.39 to Σ; •; Γ ♮ F𝑐 , 𝑥1 :
𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F ′ from the premise of T-ClosureValue. □

Lemma E.41 (Stack Validity is Preserved after Assignment). If Σ ⊢ 𝜎 : Γ and Γ(𝜋) = 𝜏 sx and

Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ and •; Γ ▷− ∗𝜋 ; Θ ⊢𝜇 𝜏 si { 𝜏 sx ⊣ Γ′ and •; Γ′; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 }
and 𝜎 ⊢ 𝜋 ⇓ 𝜋 ↦→ V[_] and 𝜋 = 𝑥 .𝑞, then Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] : gc-loansΘ (Γ′[𝜋 ↦→ 𝜏 si]).
Proof. The proof proceeds by induction on the stack validity judgment Σ ⊢ 𝜎 : Γ which has

two cases, WF-StackEmpty and WF-StackFrame.

WF-StackEmpty

Σ ⊢ • : •

In this case, the stack is empty and therefore, we have a contradiction since our premise says
that Γ(𝜋) = 𝜏sx, but Γ = • and •(𝜋) necessarily fails.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

In the premise of WF-StackFrame, we have a collection of typing judgments for values stored in
the stack. This naturally leads us to another case split: either 𝑥 (the root of 𝜋 from 𝜋 = 𝑥 .𝑞) is in
the current frame or it is not.

If 𝑥 is not in the current frame, we apply our induction hypothesis to Σ ⊢ 𝜎 : Γ to get Σ ⊢ 𝜎 [𝑥 ↦→
V[𝑣]] : Γ′[𝜋 ↦→ 𝜏si]. Then, we apply WF-StackFrame with the same typing judgments we already
have to reach our overall conclusion of Σ ⊢ (𝜎 ♮ 𝜍) [𝑥 ↦→ V[𝑣]] : (Γ′ ♮ F )[𝜋 ↦→ 𝜏si] (noting that
substituting inside or outside is definitionally equal when we know that 𝑥 ∉ dom(𝜎)).
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If 𝑥 is in the current frame, then we apply Lemma E.13 to Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ and
•; Γ; Θ ⊢𝜇 𝜏si { 𝜏sx ⊣ Γ′ (both from our premise) to get Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′. Then,
we note that it would be a well-formedness violation for this value to depend on 𝑥 itself (since
that would mean it was a cyclical reference) and thus, we can get that Σ; •; Γ′[𝜋 ↦→ 𝜏si]; Θ ⊢
𝑣 : 𝜏si ⇒ Γ′[𝜋 ↦→ 𝜏si]. Finally, we can garbage collect the loans from the old type to get
Σ; •; gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si]); Θ ⊢ 𝑣 : 𝜏si ⇒ gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si])
For the other typing judgments in this frame, we apply Lemma E.40 to get ∀𝑥 ∈

dom(𝜍). Σ; •; gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si]); • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ′ ♮ F )(𝑥) ⇒ gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si]).
Thus, we can apply WF-StackFrame to conclude Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] : gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si]). □

E.8 Values are Well-Types at Rewritten Types Lemma
Lemma E.42 (Values are Well-Typed At Rewritten Types). If Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ𝑖 and

Δ; Γ𝑖 ; Θ ⊢𝜇 𝜏 si { 𝜏 si ′ ⊣ Γ′, then Σ; Δ; Γ′; Θ ⊢ 𝑣 : 𝜏 si ′ ⇒ Γ′.

Proof. We proceed by induction on the value typing relation.
In the case of T-Tuple, we need to apply the induction hypothesis for each entry which has a

changed type, and Lemma E.13 for each entry which does not.
In the case of T-Array, we just apply the induction hypothesis to each entry.

T-Pointer
Σ; Γ ⊢ R□ [𝜋 ] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟 )

Σ; Δ; Γ; Θ ⊢ ptr R□ [𝜋 ] : &𝑟 𝜔 𝜏xi ⇒ Γ

For the T-Pointer case, we proceed by induction on the region rewriting judgement. The only
interesting cases are for reference types. From there, we proceed by induction on the outlives
relation, for which the only interesting case is OL-CombineConcrete.

OL-CombineConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb Γ; Θ ⊢ { 𝑟1 , 𝑟2 } clrs
𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)

Δ; Γ; Θ ⊢+ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

The T-Pointer case is immediate. We know that the referent type is preserved since we do not
change any types in the context, and we know the loan is preserved since loan sets only grow.

In all other cases, we know the types cannot change, which means Γ = Γ′, so we are done. □

E.9 Function Definitions are Self-Contained Lemma
Lemma E.43 (Function Definitions are Self-Contained).

If ⊢ Σ; •; Γ; Θ and Σ(𝑓 ) = fn 𝑓 <𝜑 , 𝜚 , 𝛼>(𝑥1 : 𝜏 si1 , . . . , 𝑥𝑛 : 𝜏 si𝑛 ) → 𝜏 si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }, then
Σ; 𝜑 : FRM , 𝜚 : RGN , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ ♮ 𝑥1 : 𝜏 si1 , . . . , 𝑥𝑛 : 𝜏 si𝑛 ; Θ ⊢ framed 𝑒 : 𝜏 si

𝑓
⇒ Γ.

Proof. Begin by noting that WF-FunctionDefinition gives us that
Σ; 𝜑 : FRM , 𝜚 : RGN , 𝜚1 :> 𝜚2 , 𝛼 :★; • ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; • ⊢ 𝑒 : 𝜏si

𝑓
⇒ Γ′. We also have by

inspection of the typing rules that Γ′ = • ♮ F ′ for some frame F ′. Then by T-Framed, it suffices to
show that Σ; 𝜑 : FRM , 𝜚 : RGN , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si

𝑓
⇒ Γ ♮ F ′. But

note that this is immediate. The typing derivation with • and the current frame means that there’s
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absolutely no reliance on context outside 𝑥1, . . . 𝑥𝑛 , and these places are necessarily completely
disjoint from places in Γ since any regions in their types must be abstract. □

E.10 Subset Related Environments Lemma
Lemma E.44 (Outlives Produces Subset-Related Environments). If Δ; Γ; Θ ⊢𝜇 𝑟1 :> 𝑟2 ⊣ Γ′,

then ∀𝑟 . Γ(𝑟 ) ⊆ Γ′(𝑟 ).

Proof. The proof proceeds by induction on the outlives relation Δ; Γ; Θ ⊢𝜇 𝑟1 :> 𝑟2 ⊣ Γ′. We
will consider each case.

OL-Refl

Δ; Γ; Θ ⊢𝜇 𝜌 :> 𝜌 ⊣ Γ

OL-BothAbstract
𝜚1 : RGN ∈ Δ 𝜚2 : RGN ∈ Δ 𝜚1 :> 𝜚2 ∈ Δ

Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚2 ⊣ Γ

OL-AbstractConcrete
𝜚 : RGN ∈ Δ 𝑟 ∈ dom(Γ)

Δ; Γ; Θ ⊢𝜇 𝜚 :> 𝑟 ⊣ Γ

OL-CheckConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb
𝑟1 occurs before 𝑟2 in Γ

Δ; Γ; Θ ⊢= 𝑟1 :> 𝑟2 ⊣ Γ

Each of OL-Refl,OL-BothAbstract,OL-AbstractConcrete, andOL-CheckConcrete are immediate
since Γ′ = Γ.

OL-Trans
Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚2 ⊣ Γ′

Δ; Γ′; Θ ⊢𝜇 𝜚2 :> 𝜚3 ⊣ Γ′′

Δ; Γ; Θ ⊢𝜇 𝜚1 :> 𝜚3 ⊣ Γ′′

OL-ConcreteAbstract
Γ1,0 (𝑟 ) = { 𝜔𝑝

𝑛 } ≠ ∅ ∀𝑖 ∈ { 1 . . . 𝑛 }. �𝜋. 𝑝𝑖 = 𝜋 ∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ0 ⊢shrd 𝑝𝑖 : _, 𝜌𝑖𝑚𝑖

𝜚 : RGN ∈ Δ ∀𝑖 ∈ { 1 . . . 𝑛 }.∀𝑗 ∈ { 1 . . . 𝑚𝑖 }. Δ; Γ𝑖,𝑗−1; Θ ⊢𝜇 𝜌𝑖,𝑗 :> 𝜚 ⊣ Γ𝑖,𝑗

Δ; Γ1,0; Θ ⊢𝜇 𝑟 :> 𝜚 ⊣ Γ𝑛,𝑚𝑛

Both OL-Trans and OL-ConcreteAbstract follow by applying the induction hypothesis to all
instances of the outlives judgment in their premise and then relying on transitivity of subset.

OL-CombineConcrete
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb Γ; Θ ⊢ { 𝑟1 , 𝑟2 } clrs
𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)

Δ; Γ; Θ ⊢+ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

OL-CombineConcreteUnrestricted
Γ ⊢ 𝑟1 rnrb Γ ⊢ 𝑟2 rnrb

𝑟1 occurs before 𝑟2 in Γ { ℓ } = Γ (𝑟1) ∪ Γ (𝑟2)
Δ; Γ; Θ ⊢⊞ 𝑟1 :> 𝑟2 ⊣ Γ [𝑟2 ↦→ { ℓ }]

For OL-CombineConcrete and OL-CombineConcreteUnrestricted, the conclusion is almost im-
mediate since Γ′ is very nearly Γ. However, it differs in the loan set for one particular region 𝑟2.
Fortunately, its new loan set in Γ′ is the union of its loan set with the loan set for 𝑟1 and thus we
immediately have Γ(𝑟2) ⊆ Γ′(𝑟2). □

Lemma E.45 (Region Rewriting Produces Subset-Related Environments). If Δ; Γ; Θ ⊢𝜇
𝜏1 { 𝜏2 ⊣ Γ′, then ∀𝑟 . Γ(𝑟 ) ⊆ Γ′(𝑟 ).

Proof. This proof proceeds by induction on the region rewriting relation Δ; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣
Γ′. We will consider each case. For RR-Refl and RR-Uninit, the output environment Γ′ is precisely Γ
and thus the result is immediate. For RR-Trans, RR-Array, RR-Slice and RR-Tuple, the result follows
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from applying the induction hypothesis to every region rewriting derivation in their premise and
combining the results by transitivity of subset. This leaves us with one more interesting case,
RR-Reference. For this case, apply Lemma E.44 to the outlives derivation in the premise. Then,
apply our induction hypothesis to the region rewriting derivation in their premise. Finally, combine
the two by transitivity of subset. □

Lemma E.46 (Frame Typing Union Produces Subset-Related Environments). If F = F1 ⋓ F2,

then ∀𝑟 . F1 (𝑟 ) ⊆ F (𝑟 ) and ∀𝑟 . F2 (𝑟 ) ⊆ F (𝑟 ).
Proof. First, note that the definition of ⋓ is symmetric and thus we will only prove the first

conclusion, the second proceeding immediately the same in all cases.
We proceed by induction over the frame typing. For • ⋓ •, the case follows immediately. For

F1 , 𝑥 : 𝜏 ⋓ F2 , 𝑥 : 𝜏 , the result follows directly from applying the induction hypothesis to
F1 ⋓ F2. The last case is the interesting one, F1 , 𝑟 ↦→ ℓ ⋓ F2 , 𝑟 ↦→ ℓ ′. In this case, we can apply our
induction hypothesis to get ∀𝑟 ′ ∈ dom(F1), F1 (𝑟 ′) ⊆ F2 (𝑟 ′). Now we just need that { ℓ } ⊆ F (𝑟 ).
But this holds immediately since F (𝑟 ) = { ℓ } ∪ { ℓ ′ }, so we’re done. □

Lemma E.47 (Stack Typing Union Produces Subset-Related Environments). If Γ = Γ1 ⋓ Γ2,
then ∀𝑟 . Γ1 (𝑟 ) ⊆ Γ(𝑟 ) and ∀𝑟 . Γ2 (𝑟 ) ⊆ Γ(𝑟 ).

Proof. First, note that the definition of ⋓ is symmetric and thus we will only prove the first
conclusion, the second proceeding immediately the same in all cases.

We proceed by induction over the Stack Typing.
For • ⋓ •, the result is trivial and thus immediate. For Γ1 ♮ F ⋓ Γ2 ♮ F , we apply the induction

hypothesis and Lemma E.46. □

Lemma E.48 (Subset-Related Frames are also Frame Typing Union Related). If ∀𝑟 ∈ F .

F ′(𝑟 ) ⊆ F (𝑟 ) and dom(F ) = dom(F ′), then ∃F𝑜 such that F = F ′ ⋓ F𝑜 .
Proof. We proceed by induction over the frame typing. For the • case, the proof follows

immediately.
For F = F𝑖 , 𝑥 : 𝜏 and F ′ = F ′

𝑖 , 𝑥 : 𝜏 , we just apply the induction hypothesis on F𝑖 and F ′
𝑖 , and

add 𝑥 : 𝜏 to F𝑜 .
For F = F𝑖 , 𝑟 ↦→ { ℓ } and F ′ = F ′

𝑖 , 𝑟 ↦→ { ℓ ′ }, we apply the induction hypothesis, and add on
𝑟 ↦→ { ℓ } \ { ℓ ′ }, which is well defined because from our premise we have { ℓ ′ } ⊆ { ℓ }. □

Lemma E.49 (Subset-Related Environments are also Stack Typing Union Related). If
∀𝑟 ∈ Γ. Γ′(𝑟 ) ⊆ Γ(𝑟 ) and dom(Γ) = dom(Γ′), then ∃Γ𝑜 such that Γ = Γ′ ⋓ Γ𝑜 .

Proof. Proceed by induction on the stack typing. In the • case, the proof is immediate. In the
Γ = Γ𝑖 ♮ F case, we apply Lemma E.48 and the induction hypothesis. □

E.11 Preservation in More Precise Environments Lemmas
Lemma E.50 (Type Computation Preserved in More Precise Environments).

If dom(Γ) = dom(Γ′), and ∀𝑥 . Γ(𝑥) = Γ′(𝑥) and ∀𝑟 . Γ′(𝑟 ) ⊆ Γ(𝑟 ) and Δ; Γ ⊢𝜔 𝑝 : 𝜏xi then
Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi.
Proof. Proceed by induction over the type computation judgement with Γ. The only non-

immediate case is TC-Deref.

TC-Deref
Δ; Γ ⊢𝜔 𝑝 : &𝜌 𝜔′ 𝜏xi, { 𝜌𝑝 } 𝜔 ≲ 𝜔′

Δ; Γ ⊢𝜔 ∗𝑝 : 𝜏xi, { 𝜌𝑝 , 𝜌 }
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This follows from the induction hypothesis and Lemma E.44.
□

Lemma E.51 (Type Well-Formedness Preserved in More Precise Environments).
If dom(Γ) = dom(Γ′), and ∀𝑟 . Γ′(𝑟 ) ⊆ Γ(𝑟 ) and Σ; Δ; Γ ⊢ 𝜏 si then Σ; Δ; Γ′ ⊢ 𝜏 si.

Proof. Proceed by induction over the type well formedness under Γ. The only case that isn’t
immediate or doesn’t proceed directly from the induction hypothesis is WF-Ref.

WF-Ref
Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏xi

Σ; Δ; Γ ⊢ &𝜌 𝜔 𝜏xi

We can apply the induction hypothesis to get the premise that 𝜏xi is well formed. For our other
premise, we need to show that our region is still well-formed. We can look at this by cases. If the
region 𝜌 is local, we can apply WF-LocalRegion since we know dom(Γ) = dom(Γ′). If the region 𝜌

is abstract, we can apply WF-AbstractRegion since we know that Δ is unchanged. □

Lemma E.52 (Stack Typing Validity Preserved in More Precise Environments).
If dom(Γ) = dom(Γ′), and ∀𝑟 . Γ′(𝑟 ) ⊆ Γ(𝑟 ) and Σ; Δ ⊢ Γ then Σ; Δ ⊢ Γ′

Proof. Proceed by induction over the stack typing validity judgement for Γ. The empty case is
trivial, so the interesting case is WF-StackTyping.

WF-StackTyping
Σ; Δ ⊢ Γ places(F) ⊆ dom(Γ ♮ F)

dom(F) # dom(Γ) ∀𝑥 : 𝜏 ∈ F. Σ; Δ; Γ ♮ F ⊢ 𝜏
∀𝜏 ∈ cod(F) . ∀𝑟 ∈ free-regions(𝜏) . ∀𝜏′ ∈ dom(Γ) . 𝑟 does not occur outside of a closure in 𝜏′

∀𝑟 ↦→ { ℓ } ∈ F. ∀𝜔𝑝 ∈ { ℓ }. ∃𝜏xi . Δ; Γ ♮ F ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ ⊢ Γ ♮ F

We get Σ; Δ ⊢ Γ′ by induction. We get the type well formedness from Lemma E.51. We get the
type computation from Lemma E.50, and that’s all we needed to show.

□

Lemma E.53 (Ownership Safety Preserved in More Precise Environments).
If dom(Γ) = dom(Γ′), and ∀𝑟 . Γ′(𝑟 ) ⊆ Γ(𝑟 ) and Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ } then Δ; Γ′; Θ ⊢𝜔 𝑝 ⇒ { ℓ ′ }
and { ℓ ′ } ⊆ { ℓ }.

Proof. The proof proceeds by induction on the ownership safety judgment Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ }.
This gives us three cases: O-SafePlace, O-Deref, and O-DerefAbs.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

We need to show Δ; Γ′; Θ ⊢𝜔 𝑝 ⇒ { 𝜔𝜋 } and that { 𝜔𝜋 } ⊆ { 𝜔𝜋 }. The latter is immediate
from the definition of subset which leaves us with the former. For the former, we’ll correspondingly
wish to apply O-SafePlace but using Γ′ as our context. This means we need to show that ∀𝑟 ′ ↦→
{ ℓ } ∈ Γ′. (∀𝜔′

𝑝 ∈ { ℓ }.(𝜔 = uniq ∨ 𝜔 ′ = uniq) =⇒ 𝜋 ′ #𝜋) ∨ (∃𝜋 ′ : &𝑟 ′ 𝜔 ′ 𝜏 ′ ∈
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Γ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔 ′ 𝜏 ′ ∈ Γ. 𝜋 ′ ∈ { 𝜋𝑒 })). Fortunately, from dom(Γ) = dom(Γ′), we know that
for every 𝑟 ′ ∈ dom(Γ), 𝑟 ′ ∈ dom(Γ′), and further that Γ′(𝑟 ′) ⊆ Γ(𝑟 ′). Thus, for each 𝑟 ′, we
know there are only potentially fewer loans to show if the obligation was met using the clause of
∀𝜔′

𝑝 ∈ { ℓ }.(𝜔 = uniq∨𝜔 ′ = uniq) =⇒ 𝜋 ′ #𝜋 . If the obligation was met using the other clause,
note that Γ and Γ′ can only differ in the loan sets they associate with any given region and so the
exact fact must still be true for Γ′.

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

This case proceeds much like the O-SafePlace case in terms of meeting the direct ownership
safety criterion (the last premise of O-Deref) for the new derivation using O-Deref with Γ′. It
differs only in that we need also apply our induction hypothesis to each of the 𝑛 derivations
of ownership safety used in ∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , 𝜋𝑖 , 𝜋𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝 ′

𝑖
}. This gives

us ∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ′; Θ ⊢𝜋𝑒 , 𝜋𝑖 , 𝜋𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝 ′′
𝑖

} and ∀𝑖 ∈ { 1 . . . 𝑛 }. { 𝜔𝑝 ′′
𝑖

} ⊆
{ 𝜔𝑝 ′

𝑖
}. The former combined with the same reasoning from the O-SafePlace case gives us

Δ; Γ′; Θ ⊢𝜔 𝑝□ [∗𝜋] ⇒ { 𝜔𝑝 ′′
1 , . . . 𝜔𝑝 ′′

𝑛 , 𝜔𝑝□ [∗𝜋] } and the latter allows us to conclude
{ 𝜔𝑝 ′′

1 , . . . 𝜔𝑝 ′′
𝑛 , 𝜔𝑝□ [∗𝜋] } ⊆ { 𝜔𝑝 ′

1 , . . .
𝜔𝑝 ′

𝑛 , 𝜔𝑝□ [∗𝜋] } since we know that each individual
collection of loans has the subset relation from above and the whole set is simply their union.

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

This case proceeds identically to the case for O-SafePlace. We need to show Δ; Γ′; Θ ⊢𝜔 𝑝 ⇒
{ 𝜔𝑝□ [∗𝜋] } and that { { 𝜔𝑝□ [∗𝜋] } } ⊆ { { 𝜔𝑝□ [∗𝜋] } }. The latter is immediate from the definition
of subset which leaves us with the former. For the former, we’ll correspondingly wish to apply
O-DerefAbs but using Γ′ as our context. This means we need to show that ∀𝑟 ′ ↦→ { ℓ } ∈ Γ′. (∀𝜔′

𝑝 ∈
{ ℓ }.(𝜔 = uniq∨𝜔 ′ = uniq) =⇒ 𝜋 ′ #𝑝□ [∗𝜋]) ∨ (∃𝜋 ′ : &𝑟 ′𝜔 ′𝜏 ′ ∈ Γ ∧ (∀𝜋 ′ : &𝑟 ′𝜔 ′𝜏 ′ ∈ Γ. 𝜋 ′ ∈
{ 𝜋𝑒 })). Fortunately, from dom(Γ) = dom(Γ′), we know that for every 𝑟 ′ ∈ dom(Γ), 𝑟 ′ ∈ dom(Γ′),
and further that Γ′(𝑟 ′) ⊆ Γ(𝑟 ′). Thus, for each 𝑟 ′, we know there are only potentially fewer loans to
show if the obligation was met using the clause of ∀𝜔′

𝑝 ∈ { ℓ }.(𝜔 = uniq∨𝜔 ′ = uniq) =⇒ 𝜋 ′ #𝜋 .
If the obligation was met using the other clause, note that Γ and Γ′ can only differ in the loan sets
they associate with any given region and so the exact fact must still be true for Γ′. □

Lemma E.54 (Expressions Remain Well-Typed in More Precise Environments).
If dom(Γ) = dom(Γ′), and ∀𝑟 . Γ′(𝑟 ) ⊆ Γ(𝑟 ) and Σ; •; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ𝑓 then Σ; •; Γ′; Θ ⊢ 𝑒 :
𝜏 ⇒ Γ′

𝑓
and dom(Γ𝑓 ) = dom(Γ′

𝑓
), and ∀𝑟 . Γ′

𝑓
(𝑟 ) ⊆ Γ𝑓 (𝑟 )

Proof. We proceed by induction over the expression typing.
T-Move, T-Copy, and T-Borrow all follow from the Lemma E.53 and the Lemma E.50.



1:74 Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed

T-BorrowIndex, T-BorrowSlice, and T-IndexCopy all follow from the induction hypothesis,
Lemma E.53, and the Lemma E.50.

T-Seq follows from the observation that garbage collecting loans will preserve subsets and clear
in exactly both or neither, and from the induction hypothesis.

T-Branch and T-Match follow from applying the induction hypothesis, Lemma E.45, Lemma E.47.
T-Let follows from the same observation about garbage collection in the T-Seq case, the induction

hypothesis, and Lemma E.45.
T-Assign follows from the induction hypothesis, Lemma E.53, Lemma E.47.
T-AssignDeref both follow from the induction hypothesis, follows from the induction hypothesis,

Lemma E.53, Lemma E.47, and Lemma E.50.
T-AppFunction follows from the induction hypothesis, and a few pieces about the well-formedness

of the instantiations happening in T-AppFunction (namely, frame expressions, regions, and types).
For the frame expression validity, we consider each case and note that WF-EnvVar depends only on
Δ which is unchanged and that WF-Env appeals to stack typing validity and so it suffices to show
that that still holds in our more precise environment which we do by appealing to Lemma E.52. For
the region validity, there are again two cases to considerWF-LocalProv which applies if the domain
of Γ is the same as the domain of Γ′ which we have directly from our premise andWF-AbstractProv
which depends only on Δ which is unchanged. For the type validity, we appeal to Lemma E.51.

T-AppClosure follows from the induction hypothesis and Lemma E.45.
T-LetRegion, T-While, T-ForArray, T-ForSlice, T-Closure, T-Tuple, T-Array, T-Slice, T-Drop, T-Left,

T-Right follow immediately from the induction hypothesis.
T-Function, T-Abort, T-Unit, T-U32, T-True, and T-False are immediate.

□

E.12 Preservation under Safe Loan Updates Lemmas
Lemma E.55 (Ownership Safety Produces Non Conflicting Loans). If

(1) 𝑝□𝑟𝑝 [𝑝𝑟𝑝 ] ∈ { ℓ }, where 𝑟𝑝 ↦→ { ℓ } ∈ regions(Γ, Θ)
(2) Γ(𝑟𝑏) = ∅
(3) Γ [𝑟𝑏 ↦→ { ℓ𝑏 }] ⊢ 𝑟𝑝 rnrb

(4) •; Γ; Θ ⊢𝜋𝑏𝜔 𝑝𝑏 ⇒ { ℓ𝑏 }

then ∀𝜔𝑝 ′ ∈ { ℓ𝑏 }. 𝑝𝑟𝑝 #𝑝 ′
.

Proof. Proceed by induction on the ownership safety judgement for 𝑝 in the premise.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

We need to show that 𝑝𝑟𝑝 #𝜋 . Since 𝑟𝑝 ∈ dom(regions(Γ, Θ)), we know from the hypothesis of
O-SafePlace that either 𝑟𝑝 is excluded, or all loans in it are disjoint from 𝜋 .
𝑟𝑝 cannot have been exluded because Γ ⊢ 𝑟𝑝 rnrb.
This just leaves the case where all loans in Γ(𝑟𝑝 ) are disjoint from 𝜋 . Let 𝜋𝑟𝑝 be the inner place of

𝑝𝑟𝑝 . More formally, 𝑝𝑟𝑝 = 𝑝□ [𝜋𝑟𝑝 ]. By this disjointness, we know 𝑝□𝑟𝑝 [𝑝
□ [𝜋𝑟𝑝 ]] #𝜋 , which directly

implies 𝑝□ [𝜋𝑟𝑝 ] #𝜋 , which is what we wanted to show.
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O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

We need to show that 𝑝□ [∗𝜋] #𝑝𝑟𝑝 , and that ∀𝑖, 𝜔𝑝 ∈ { 𝜔𝑝 ′
𝑖
}. 𝑝𝑟𝑝 #𝑝 .

The latter we get from applying the induction hypothesis.
The former follows from the same reasoning as in the previous case.

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

Since Δ = •, there are no valid reference types that have an abstract region, meaning the first
hypothesis is a contradiction. □

Lemma E.56 (Ownership Safety is Preserved under Safe Loan Updates). If

(1) •; Γ; Θ ⊢𝜔𝑏
𝑝𝑏 ⇒ { ℓ𝑏 }

(2) •; Γ ♮ F ; Θ ⊢𝜋1
𝜔 𝑝 ⇒ { ℓ }

(3) and Γ(𝑟𝑏) = {}
(4) Γ [𝑟𝑏 ↦→ { ℓ𝑏 }] ⊢ 𝑟𝑝 rnrb

(5) 𝜋1 = 𝜋2 or 𝜋1 = 𝜋2 ∪ { 𝜋 | 𝑝□ [∗𝜋] ∈ { ℓ𝑏 } }
(6) either root-of(𝑝) ∈ dom(F ) or ∃𝑟𝑝 ∈ dom(Γ ♮ F ), 𝑝□, 𝑝 ′.
(7) 𝑝 = 𝑝□ [𝑝 ′]
(8) 𝑝 ′ ∈ Γ ♮ F (𝑟𝑝 )
(9) ∀𝑟 ∈ dom(F ), 𝜔𝑝 ∈ F (𝑟 ). either root-of(𝑝) ∈ dom(F ), or ∃𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ).

𝜔𝑝 ∈ { ℓ }.
(In english, loans in the closure’s frame come from the current frame or a closure’s captured

frame in Γ or Θ)

then •; Γ [𝑟𝑏 ↦→ ℓ𝑏] ♮ F ; Θ ⊢𝜋2
𝜔 𝑝 ⇒ { ℓ ′ }.

Proof. Proceed by induction on the ownership safety judgement for 𝑝 in the premise.

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }

Let 𝑟 ′ be an arbitrary region. If the disjunction was proven using the right part, which talks about
the exclusion list, then we can prove it again the same way, since none of the types are changed
and the exclusion list 𝜋2 includes all of 𝜋1 in either case.
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If the disjunction was proven using the left part, the only interesting case is when 𝑟 ′ = 𝑟𝑏 . If
root-of(𝜋) ∈ dom(F ), then we’re done, because all loans in { ℓ𝑏 } are disjoint just by the well
formedness of the environment Γ.
Otherwise, root-of(𝜋) ∈ dom(Γ) and ∃𝑟𝑝 such that 𝜋 ∈ Γ ♮ F (𝑟𝑝 ), and we want to show that

∀𝜔′
𝑝□ [𝜋 ′] ∈ { ℓ𝑏 }, 𝜋 #𝜋 ′.

If 𝑟𝑝 ∈ dom(F ), then we’re done because each loan in 𝑟𝑝 either comes from dom(F ), in which
case disjointness is immediate, or it comes from a loan mapping in Γ or Θ, in which case we can
apply Lemma E.55 to finish the proof.

Otherwise, 𝑟𝑝 ∈ dom(Γ). By the well formedness of Γ [𝑟𝑏 ↦→ { ℓ𝑏 }] ♮ F , Γ [𝑟𝑏 ↦→ { ℓ𝑏 }] ⊢ 𝑟 ′ rnrb.
Given all of this we can apply Lemma E.55 to finish the proof.

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

Firstly, we would like to apply our induction hypothesis. In order to do so, we need to show that
the new excl is either the same, or only has places from { ℓ𝑏 } added. If 𝑟 ≠ 𝑟𝑏 , then Γ ♮ F (𝑟 ) =
Γ [𝑟𝑏 ↦→ { ℓ𝑏 }] ♮ F , so the exclusion list is the same. If 𝑟 = 𝑟𝑏 , then excl was empty, and now
includes the places { 𝜋 | 𝑝□ [∗𝜋] ∈ { ℓ𝑏 } }. We also need to show that either that either the place
expression is in the domain of F or that it has a sub place expression in a loan set, but this is
immediate from our hypotheses. So in either case we satisfy the necessary hypothesis and can
apply the induction hypothesis.
Whats left to show is the disjointness or exclusion condition, which follows identically to the

reasoning in the previous case.

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

Since Δ = •, there are no valid reference types that have an abstract region, meaning the first
hypothesis is a contradiction. □

Lemma E.57 (Ownership Safety is Preserved after Environment Union). If •; Γ1; Θ ⊢𝜋1
𝜔

𝑝 ⇒ { ℓ } and •; Γ2; Θ ⊢𝜋2
𝜔 𝑝 ⇒ { ℓ ′ } then •; Γ1 ⋓ Γ2; Θ ⊢𝜋1,𝜋2

𝜔 𝑝 ⇒ { ℓ ′′ } and 𝜋1 = 𝜋2 or

𝜋1 = 𝜋2 ∪ { 𝜋 | 𝑝□ [∗𝜋] ∈ { ℓ𝑏 } }.
Proof. Proceed by induction on the ownership safety judgements in the premise. Note that they

both have the same sequence of proof rule applications, because the judgement is inductive over 𝑝 .

O-SafePlace
∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′

𝑝□ [𝜋 ′] ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝜋 ′ #𝜋 )
∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝜋 ⇒ { 𝜔𝜋 }
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Let 𝑟 be an arbitrary region.
If either the derivation with Γ1 or Γ2 used the second part of the disjunction, we can proceed by

the second part of the disjunction.
Otherwise, both derivations used the first part of the disjunction. Since Γ1 ⋓ Γ2 (𝑟 ) = Γ1 (𝑟 ) ∪Γ2 (𝑟 ),

we can just combine these two facts and proceed by the first part of the disjunction.

O-Deref
Γ (𝜋 ) = &𝑟 𝜔𝜋 𝜏𝜋 Γ (𝑟 ) = { 𝜔′

𝑝
𝑛
} excl = { 𝜋 𝑗 where 𝑗 ∈ { 1, . . . 𝑛 } | 𝑝 𝑗 = 𝑝□𝑗 [∗𝜋 𝑗 ] } 𝜔 ≲ 𝜔𝜋

∀𝑖 ∈ { 1 . . . 𝑛 }. Δ; Γ; Θ ⊢𝜋𝑒 , excl , 𝜋
𝜔 𝑝□ [𝑝𝑖 ] ⇒ { 𝜔𝑝′

𝑖
}

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝′′ ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝′′ #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , excl , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝′1 , . . . 𝜔𝑝′𝑛 , 𝜔𝑝□ [∗𝜋 ] }

In order to apply the induction hypothesis, we need show that our new excl is the union of the
two from the derivations. This is immediate because Γ1 ⋓ Γ2 (𝑟 ) = Γ1 (𝑟 ) ∪ Γ2 (𝑟 ).
To finish the case, follow the same reasoning from the previous case for the disjunction.

O-DerefAbs
Γ (𝜋 ) = &𝜚 𝜔𝜋 𝜏𝜋 Δ; Γ ⊢𝜔 𝑝□ [∗𝜋 ] : 𝜏 𝜔 ≲ 𝜔𝜋

∀𝑟 ′ ↦→ { ℓ } ∈ regions(Γ, Θ) . (∀𝜔′
𝑝 ∈ { ℓ }.(𝜔 = uniq ∨𝜔′ = uniq) =⇒ 𝑝 #𝑝□ [∗𝜋 ])

∨ (∃𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) ∧ �&𝑟 ′ 𝜔′ 𝜏′ ∈ Θ ∧ (∀𝜋 ′ : &𝑟 ′ 𝜔′ 𝜏′ ∈ explode(Γ) . 𝜋 ′ ∈ { 𝜋𝑒 , 𝜋 }))

Δ; Γ; Θ ⊢𝜋𝑒𝜔 𝑝□ [∗𝜋 ] ⇒ { 𝜔𝑝□ [∗𝜋 ] }

Since Δ = •, there are no valid reference types that have an abstract region, meaning the first
hypothesis is a contradiction.

□

Lemma E.58 (Ownership Safety is Preserved after Type Checking a Closure Body). If
(1) •; Γ; Θ ⊢𝜔 𝑝𝑏 ⇒ { ℓ𝑏 }
(2) Γ(𝑟 ) = {}
(3) ∀𝑥 ∈ free-vars(𝑒). 𝑥 ∈ dom(F )
(4) ∀𝑟 ∈ free-regions(𝑒). 𝑟 ∈ dom(F )
(5) ∀𝑟 ∈ dom(F ), 𝜔𝑝 ∈ F (𝑟 ).root-of(𝑝) ∈ dom(F )∨∃𝑟 ′ ↦→ {ℓ } ∈ regions(Γ, Θ). 𝜔𝑝 ∈ {ℓ }.

(In English, loans in the closure’s frame come from the current frame or a closure’s captured

frame in Γ or Θ)
(6) Σ; •; Γ ♮ F ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ𝑜 ♮ F𝑜

then

(1) •; Γ𝑜 ; Θ ⊢𝜔 𝑝𝑏 ⇒ { ℓ ′𝑏 }
(2) ∀𝑟 ∈ dom(F𝑜 ), 𝜔𝑝 ∈ F𝑜 (𝑟 ).root-of(𝑝) ∈ dom(F𝑜 ) ∨ ∃𝑟 ′ ↦→ { ℓ } ∈ regions(Γ𝑜 , Θ).

𝜔𝑝 ∈ { ℓ }.
(In English, loans in the closure’s frame come from the current frame or a closure’s captured

frame in Γ𝑜 or Θ)

Proof. In the T-Move case, the context is updated, but since 𝜋 ∈ dom(F ), Γ𝑜 = Γ, so the
conclusions follow from the premises.
In the T-Copy, T-Function, T-Abort, T-Unit, T-u32, T-True, and T-False cases, Γ𝑜 = Γ so the

conclusions follow from the premises.
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In the T-IndexCopy, T-LetRegion, T-While, T-ForArray, T-ForSlice, T-Closure, T-Tuple, T-Array,
T-Slice, T-Drop, T-Left, and T-Right cases, the proof is immediate from the induction hypothesis.

In the T-Borrow, T-BorrowIndex, and T-BorrowSlice cases, the proof follows from the induction
hypothesis and Lemma E.56. The last condition is the restriction on loans in F , but this is immediate
by inspection of the ownership safety judgement. The only way to create new loans is to directly
borrow a place, in which case we’d have that the loan is in the domain of F , and otherwise the
loans originated from the loan set in Γ ♮ F of a reference being reborrowed, and we already know
the property for Γ ♮ F .
In the T-Seq case, the proof follows from the induction hypothesis and Lemma E.17 (note that

gc-loans does not change any types in the environment and produces related environments).
In the T-Branch and T-Match cases, the proof follows from the induction hypothesis, Lemma E.7,

and Lemma E.57. We also need to show that rewriting preserves the restriction on loans in F , but
this is immediate because the most that rewriting can do is union together loan sets. The rest of
the cases that use rewriting also use this same reasoning.

In the T-Let case, the proof follows from the induction hypothesis, Lemma E.7, and Lemma E.17
(note that gc-loans does not change any types in the environment and produces related environ-
ments).

In the T-AssignDeref case the proof follows from the induction hypothesis, and Lemma E.7.
In the T-Assign case, the proof follows from the induction hypothesis, Lemma E.7, and Lemma E.36.
In the T-App case, the proof follows from the induction hypothesis and Lemma E.7. □

Lemma E.59 (Outlives is Preserved under Safe Loan Updates). If

(1) •; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ }
(2) Γ(𝑟 ) = {}
(3) 𝑟 ∉ dom(F )
(4) 𝑟 ≠ 𝑟1 and 𝑟 ≠ 𝑟2
(5) ∀𝜏 ′ ∈ dom(Γ). 𝑟1 and 𝑟2 does not occur outside of a closure in 𝜏 ′
(6) •; Γ ♮ F ; Θ ⊢𝜇 𝑟1 :> 𝑟2 ⊣ Γ′ ♮ F ′

then •; Γ [𝑟 ↦→ { ℓ𝑏 }] ♮ F ; Θ ⊢𝜇 𝑟1 :> 𝑟2 ⊣ Γ′[𝑟 ↦→ { ℓ𝑏 }] ♮ F ′

Proof. Proceed by induction on the outlives relation. The only interesting cases are OL-
CombineConcrete, OL-CombineConcreteUnrestricted, and OL-CheckConcrete. They all proceed
similarly. The closure restriction is immediate from the premise because no types are changed. The
region not reborrowed restriction follows from the fact that 𝑟1 and 𝑟2 don’t occur in any types in Γ
outside of a closure, which means there’s no place in the domain of Γ for there to be a reborrow of
in ℓ . □

Lemma E.60 (Rewriting is Preserved under Safe Loan Updates). If

(1) •; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ }
(2) Γ(𝑟 ) = {}
(3) 𝑟 ∉ dom(F )
(4) ∀𝜏 ∈ F . 𝑟 does not occur in 𝜏 or 𝜏1 or 𝜏2
(5) ∀𝑟 ∈ free-regions(𝜏1) ∪ free-regions(𝜏2). ∀𝜏 ′ ∈ dom(Γ). 𝑟 does not occur outside of a closure

in 𝜏 ′.
(6) •; Γ ♮ F ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ ♮ F ′

then •; Γ [𝑟 ↦→ { ℓ𝑏 }] ♮ F ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′[𝑟 ↦→ { ℓ𝑏 }] ♮ F ′
.
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Proof. Proceed by induction on the rewriting derivation. The only interesting case is RR-
Reference, in which case we apply Lemma E.59 and the induction hypothesis. The other cases all
follow immediately or from the induction hypothesis. □

Lemma E.61 (Closure Bodies are Well-Typed under Safe Loan Updates). If
(1) Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ }
(2) Γ(𝑟 ) = {}
(3) 𝑟 ∉ dom(F )
(4) ∀𝜏 ∈ F . 𝑟 does not occur in 𝜏

(5) ∀𝑥 ∈ free-vars(𝑒). 𝑥 ∈ dom(F )
(6) ∀𝑟 ∈ free-regions(𝑒). 𝑟 ∈ dom(F )
(7) ∀𝑟 ∈ dom(F ), 𝜔𝑝 ∈ F (𝑟 ).root-of(𝑝) ∈ dom(F )∨∃𝑟 ′ ↦→ {ℓ } ∈ regions(Γ, Θ). 𝜔𝑝 ∈ {ℓ }.

(In English, loans in the closure’s frame come from the current frame or a closure’s captured

frame in Γ or Θ)
(8) ∀𝑟 ∈ free-regions(𝜏 si). ∀𝜏 ′ ∈ dom(Γ). 𝑟 does not occur in 𝜏 ′
(9) Σ; •; Γ ♮ F ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ𝑜 ♮ F𝑜
(10) Σ; • ⊢ Γ [𝑟 ↦→ { ℓ }] ♮ F

then

(1) Σ; •; Γ [𝑟 ↦→ { ℓ }] ♮ F ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ𝑜 [𝑟 ↦→ { ℓ }] ♮ F𝑜 .
(2) ∀𝑟 ∈ dom(F𝑜 ), 𝜔𝑝 ∈ F𝑜 (𝑟 ).root-of(𝑝) ∈ dom(F𝑜 ) ∨ ∃𝑟 ′ ↦→ { ℓ } ∈ regions(Γ𝑜 , Θ).

𝜔𝑝 ∈ { ℓ }.
(In English, loans in the closure’s frame come from the current frame or a closure’s captured

frame in Γ𝑜 or Θ)

Proof. Proceed by induction over the typing derivation for 𝑒 .
In T-Move and T-Copy, and T-Borrow cases, we can apply Lemma E.56 and note that type compu-

tation is unaffected by changes in loan sets.
In the T-Borrow case, we can apply Lemma E.56 and note that type computation is unaffected

by changes in loan sets. The last condition is the restriction on loans in F , but this is immediate
by inspection of the ownership safety judgement. The only way to create new loans is to directly
borrow a place, in which case we’d have that the loan is in the domain of F , and otherwise the
loans originated from the loan set in Γ ♮ F of a reference being reborrowed, and we already know
the loan set restriction for Γ ♮ F . The rest of the cases that involve borrowing use similar reasoning.

In the T-BorrowIndex and T-IndexCopy cases, we can apply Lemma E.56, the induction hypothesis,
and the note about type computation.

In the T-BorrowSlice case, we can apply Lemma E.56, the induction hypothesis, the note about
type computation, and Lemma E.58.

In the T-Seq case, we can apply the induction hypothesis, for which we need to apply Lemma E.58
and use the fact that garbage collection produces related environments with Lemma E.17.

In the T-Branch case we can apply the induction hypothesis, Lemma E.58, and Lemma E.60. We
also need to show that rewriting preserves the restriction on loans in F , but this is immediate
because the most that rewriting can do is union together loan sets. The rest of the cases that use
rewriting also use this same reasoning.

In the T-Let case, we can apply the induction hypothesis, Lemma E.58, Lemma E.60, and the fact
that garbage collection produces related environments with Lemma E.17. The last obligation is the
region not reborrowed condition. Note that by environment well formedness and our hypothesis,
any free regions in the types are not in any non closure types. Therefore, there are no places in Γ
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with the region for the new loans in ℓ to even contain a reborrow of, meaning the regions are not
reborrowed. The other cases which require region not reborrowed proceed by the same reasoning.
In the T-LetRegion, T-While, T-Closure, T-Tuple, T-Array, T-Slice, T-Left, and T-Right cases, the

proofs follows from the induction hypothesis and Lemma E.58.
In the T-AssignDeref case, we can apply the induction hypothesis, Lemma E.58, the fact that type

computation is unaffected by loan updates, Lemma E.60, and Lemma E.56.
In the T-Assign case, we can apply the induction hypothesis, Lemma E.58, the fact that type

computation is unaffected by loan updates, Lemma E.60, and Lemma E.56. The last obligation is the
unique to judgement, which is unaffected by loan updates.

In the T-ForArray and T-ForSlice cases, we can apply the induction hypothesis and Lemma E.58.
The remaining region not reborrowed obligation follows from the same reasoning in the T-Let case.

In the T-Function, T-Abort, T-Unit, T-u32, T-True, and T-False cases, the proof is immediate.
In the T-App case, we can apply the induction hypothesis, Lemma E.58 and Lemma E.60. Note

that the well formedness judgements are unaffected by loan updates. The last obligation is the
region not reborrowed judgement, follows from the same reasoning in the T-Let case.

In the T-Drop case, we can apply the induction hypothesis, Lemma E.58, and Lemma E.17, noting
that making the type of a place dead produces a related environment.

In the T-Match case we can apply the induction hypothesis, Lemma E.58, and Lemma E.60. The
last obligation is the region not reborrowed judgement, follows from the same reasoning in the
T-Let case. □

Lemma E.62 (Values are Well-Typed under Safe Loan Updates). If •; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ } and
Γ; Θ ⊢ 𝑟 rnic and Γ(𝑟 ) = ∅ and Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏 si ⇒ Γ, then Σ; •; Γ [𝑟 ↦→ { ℓ }]; Θ ⊢ 𝑣 : 𝜏 si ⇒
Γ [𝑟 ↦→ { ℓ }].

Proof. We proceed by induction on the value typing relation.
For T-u32, T-True, T-False, the result is immediate.
For T-Tuple and T-Array, we apply the induction hypothesis to each entry.

T-Pointer
Σ; Γ ⊢ R□ [𝜋 ] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟 )

Σ; Δ; Γ; Θ ⊢ ptr R□ [𝜋 ] : &𝑟 𝜔 𝜏xi ⇒ Γ

In the T-Pointer case, both judgements in the premise are unaffected by taking an empty loan
set and adding loans to it, so the case is immediate.

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐 ) |var

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 ))) = dom(F𝑐 ) |rgn
Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ

In the T-ClosureValue case, first we invert the stack frame typing hypothesis to get that ∀𝑥 ∈
dom(𝜍). Σ; •; Γ ♮ F𝑐 ; Θ ⊢ 𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐 . We can apply the induction hypothesis to each
of these statements, and apply WF-Frame to get Σ; Γ [𝑟 ↦→ { ℓ }] ⊢ 𝜍𝑐 : F𝑐 .

Next we need to show that the body remains well typed. This follows from Lemma E.61.
In all other value cases, the typing judgement holds immediately. □



Oxide: The Essence of Rust 1:81

Lemma E.63 (Stack Validity is Preserved under Safe Loan Updates). If •; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ }
and Γ; Θ ⊢ 𝑟 rnic and and Γ(𝑟 ) = ∅ and Σ ⊢ 𝜎 : Γ, then Σ ⊢ 𝜎 : Γ [𝑟 ↦→ { ℓ }].

Proof. We proceed by induction on the stack validity. There are two cases, WF-StackEmpty, and
WF-StackFrame. WF-StackEmpty is impossible, since we already know that 𝑟 is in Γ.

WF-StackFrame
Σ ⊢ 𝜎 : Γ dom(𝜍) = dom(F) |𝑥

∀𝑥 ∈ dom(𝜍) . Σ; •; Γ ♮ F; • ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ ♮ F) (𝑥) ⇒ Γ ♮ F

Σ ⊢ 𝜎 ♮ 𝜍 : Γ ♮ F

WF-StackEmpty

Σ ⊢ • : •

In the case of WF-StackFrame, we have to show that the values remain well-typed in the updated
environment. For the remaining Γ′, if 𝑟 ∈ Γ′, then we apply the induction hypothesis, otherwise
we just use the derivation from the premise.

To show that the values in the stack are still well typed in Γ [𝑟 ↦→ {ℓ}], we apply Lemma E.62. □

E.13 Preservation of Rewriting under Parallel Type Checking Lemmas
Lemma E.64 (Region Rewriting is Preserved by Parallel Loan Updates). If
(1) •; Γ′; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ𝑠
(2) •; Γ; Θ, 𝜏1,Θ′ ⊢𝜔 𝑝 ⇒ { ℓ }
(3) •; Γ′; Θ, 𝜏2,Θ′ ⊢𝜔 𝑝 ⇒ { ℓ ′ }
(4) dom(Γ) = dom(Γ′) and dom(Γ𝑜 ) = dom(Γ′𝑜 )
(5) ∀𝑟 ∈ dom(Γ). Γ′(𝑟 ) ⊆ Γ(𝑟 )
(6) ∀𝑟 ∈ dom(Γ𝑜 ). Γ′𝑜 (𝑟 ) ⊆ Γ𝑜 (𝑟 )

then •; Γ′[𝑟 ↦→ { ℓ ′ }]; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′𝑠 .

Proof. Proceed by induction on the rewriting derivation. The only interesting case is RR-
Reference, in which case we proceed by induction on the outlives derivation.
The interesting cases are OL-CombineConcrete, OL-CombineConcreteUnrestricted, and OL-

CheckConcrete since the type variable environment is guaranteed to be empty and the other cases
all involve abstract regions. The only interesting obligations are the region not reborrowed ones,
since the types in the environments are unchanged. This amounts to showing that for all loans in
{ ℓ ′ }, none are reborrows of references that have either 𝑟1 or 𝑟2 as their region.
Assume one such loan 𝜔′ ∗𝜋 ∈ ℓ

′ exists. Assume without loss of generality that 𝜋 : &𝑟1𝜔 ′′ 𝜏 ∈ Γ.
By the well formedness of Θ, 𝜏1,Θ′, since 𝜏1 contains 𝑟1, it must be the case that Γ(𝑟1) ≠ ∅. When
checking ownership safety for ∗𝜋 , we’ll need to show that excluding 𝜋 , there are no conflicts in 𝑟 ′
with any lons in 𝑟 ′. But since the exclusion clause doesn’t exclude when we have a reference in
theta, and 𝜏1 contains 𝑟1, it must be the case that 𝑟1 will not be excluded, and we will then find loan
conflicts, which is a contradiction. □

Lemma E.65 (Region Rewriting is Preserved by Type Checking Parallel Expressions).
If

(1) •; Γ′; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ𝑠
(2) Σ; •; Γ; Θ, 𝜏1,Θ′ ⊢ 𝑒 : 𝜏 ⇒ Γ𝑜
(3) Σ; •; Γ′; Θ, 𝜏2,Θ′ ⊢ 𝑒 : 𝜏 ⇒ Γ′𝑜
(4) dom(Γ) = dom(Γ′) and dom(Γ𝑜 ) = dom(Γ′𝑜 )
(5) ∀𝑟 ∈ dom(Γ). Γ′(𝑟 ) ⊆ Γ(𝑟 )
(6) ∀𝑟 ∈ dom(Γ𝑜 ). Γ′𝑜 (𝑟 ) ⊆ Γ𝑜 (𝑟 )
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then •; Γ′𝑜 ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′𝑠 .

Proof. Proceed by induction on the typing derivation using Γ′ (note that since the typing
derivation is by the structure of 𝑒 , we can simultaneously induct on the typing derivation using Γ).

In the T-Copy, T-Function, T-Abort, T-Unit, T-u32, T-True, and T-False cases, the proof is immediate,
with Γ𝑜 = Γ and Γ′′ = Γ′.

In the T-IndexCopy, T-LetRegion, T-While, T-ForArray, T-ForSlice, T-Closure, T-Tuple, T-Array,
T-Slice, T-Left, and T-Right cases, the proof follows immediately from the induction hypothesis.

In the T-Move case, the proof is immediate because making a type a dead does not add additional
obligations in the rewriting judgement.

In the T-Borrow, T-BorrowIndex, and T-BorrowSlice cases, we proceed by the induction hypoth-
esis and apply Lemma E.64.
In the T-Seq case, we just need to show that garbage collecting loans preserves rewriting. But

this is immediate, because garbage collection loans can only clear loan sets, which makes the
requirements in rewriting strictly easier since it could only remove reborrows, not add them.
In the T-AssignDeref, T-AppFunction, and T-AppClosure cases, we first apply the induction

hypothesis. Note that the output of the region rewriting at most only combines loan sets. As
such, the region rewriting is preserved, because the main condition, the region not reborrowed
requirement on the regions in the types, will still consider the same set of loans. For all region
rewriting cases below, use this same reasoning.

In the T-Assign case, we apply the induction hypothesis and reason about the rewriting as above,
but we additionally need to know that the type update maintains the region not reborrowed and
closure restrictions. For both, it’s immediate because the rewriting in the hypothesis of the typing
rule will check the same restrictions.
In the T-Branch and T-Match cases, we apply the induction hypothesis, the reasoning above

about rewriting, and the fact that ⋓ only unions together the loan sets from Γ2 and Γ3, both of
which had the rewriting restrictions true by the induction hypothesis.

In the T-Let case, we again apply the induction hypothesis and the reasoning above about
rewriting, but additionally use the same reasoning as the garbage collection case as well.
In the T-Drop case, we just need to show that rewriting is preserved by making a place dead in

order to apply the induction hypothesis. This is immediate though, because all of the obligations in
rewriting are either the same difficulty or made easier by making a place dead. □

Lemma E.66 (Outlives Still Holds with Smaller Continuation Contexts). If •; Γ; Θ, 𝜏 ⊢𝜇
𝑟1 :> 𝑟2 ⊣ Γ′ then •; Γ; Θ ⊢𝜇 𝑟1 :> 𝑟2 ⊣ Γ′.

Proof. Proceed by induction on the outlives judgement. The only interesting cases are the
OL-CombineConcrete, OL-CombineConcreteUnrestricted, and OL-CheckConcrete cases which
all proceed similarly. The main obligations, the region not reborrowed and closure restriction
judgements, are immediate since they are either unaffected by or have strictly fewer obligations in
the smaller temporary typing Θ. □

Lemma E.67 (Region Rewriting Still Holds with Smaller Continuation Contexts). If
•; Γ; Θ, 𝜏 ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′ then •; Γ; Θ ⊢𝜇 𝜏1 { 𝜏2 ⊣ Γ′.

Proof. Proceed by induction on the rewriting judgement. The only interesting case is RR-
Reference, in which case we just apply Lemma E.66. □
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E.14 Progress
Lemma E.68 (Progress). If Σ; •; Γ; Θ ⊢ 𝑒 : 𝜏 si ⇒ Γ′ and Σ ⊢ 𝜎 : Γ , then either 𝑒 is a value, 𝑒

is an abort! ( . . . ) , or ∃ 𝜎 ′, 𝑒 ′. Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎 ′; 𝑒 ′ ).

Proof. We proceed by induction on the derivation Σ; •; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ′ .

Case T-Move:
From premise: We want to step with:

T-Move
Δ; Γ; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋 ) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
† ]

E-Move
𝜎 ⊢ 𝜋 ⇓ 𝜋 ↦→ _[𝑣 ]

Σ ⊢ (𝜎 ; 𝜋 ) → (𝜎 [𝜋 ↦→ dead]; 𝑣 )

Applying Lemma E.4 to Δ; uniq; Γ ⊢𝜋 { uniq𝜋 } ⇒ , Δ; Γ ⊢uniq 𝜋 : 𝜏si (from Γ(𝜋) = 𝜏si by
TC-Place), and Σ ⊢ 𝜎 : Γ to conclude that 𝜎 ⊢ 𝜋 ⇓ _ ↦→ _[𝑣]. Thus, we can step with E-Move.

Case T-Copy:
From premise: We want to step with:

T-Copy
Δ; Γ; Θ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ ⊢shrd 𝑝 : 𝜏si copyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝑝 : 𝜏si ⇒ Γ

E-Copy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[𝑣 ]

Σ ⊢ (𝜎 ; 𝑝 ) → (𝜎 ; 𝑣 )

Applying Lemma E.4 to Δ; shrd; Γ ⊢𝑝 { ℓ } ⇒ , Δ; Γ ⊢shrd 𝑝 : 𝜏si, and Σ ⊢ 𝜎 : Γ to conclude that
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[𝑣]. Thus, we can step with E-Copy.

Case T-Borrow:
From premise:

T-Borrow
Γ (𝑟 ) = ∅ Γ; Θ ⊢ 𝑟 rnic

Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

We want to step with:
E-Borrow

𝜎 ⊢ 𝑝 ⇓ R ↦→ _[_]

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 ) → (𝜎 ; ptr R )

Applying Lemma E.4 to Δ; 𝜔 ; Γ ⊢𝑝 { ℓ } ⇒ , Δ; Γ ⊢𝜔 𝑝 : 𝜏xi, and Σ ⊢ 𝜎 : Γ to conclude that
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[_]. Thus, we can step with E-Borrow.

Case T-BorrowIndex:
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From premise:
T-BorrowIndex
Σ; Δ; Γ; Θ ⊢ 𝑒 : u32 ⇒ Γ′ Γ′ (𝑟 ) = ∅ Γ′; Θ ⊢ 𝑟 rnic

Δ; Γ′; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi

𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si ]

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 [𝑒 ] : &𝑟 𝜔 𝜏si ⇒ Γ′ [𝑟 ↦→ { ℓ }]

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context &𝜌 𝜔 𝑝 [□] and redex 𝑒 . Then, by applying our induction hypothesis to the
typing derivation for 𝑒 , we know either that 𝑒 is an abort! expression or it 𝑒 steps to some 𝑒 ′. In
the former case, we can step with E-EvalCtxAbort. In the latter case, we can plug 𝑒 ′ back into our
evaluation context and step with E-EvalCtx.

If 𝑒 is a value, we would like to step with one of:
E-BorrowIndex
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 0 ≤ 𝑛𝑖 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛𝑖 ] ) → (𝜎 ; ptr R[𝑛𝑖 ] )

E-BorrowIndexOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 ∗ 𝑝 [𝑛𝑖 ] ) → (𝜎 ; abort!(“attempted to index out of bounds”) )

Since 𝑒 is a value, we can apply Lemma E.15 to get Σ; • ⊢ Γ ▷ Γ′. Applying Lemma E.27, then gives
us Σ ⊢ 𝜎 : Γ′.
Then, we can apply Lemma E.4 to Δ; 𝜔 ; Γ′ ⊢𝑝 { ℓ } ⇒ , Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi, and Σ ⊢ 𝜎 : Γ′ to get

𝜎 ⊢ 𝑝 ⇓ R ↦→ _[𝑣]. By Lemma E.1, we know that 𝑣 = [𝑣0 , . . . , 𝑣𝑛] since the type tells us the shape
of the resultant value.
Since we wish to step with one of E-BorrowIndex and E-BorrowIndexOOB, we should observe

that we now have their shared requirement: 𝜎 ⊢ 𝑝 ⇓ R ↦→ _[[𝑣0 , . . . , 𝑣𝑛]]. Their other obligations
are a bounds check which together are a tautology (i.e. one of them must hold). Thus, we can step
with the appropriate rule based on whether or not the bounds check succeeds.

Case T-BorrowSlice:
From premise:

T-BorrowSlice
Σ; Δ; Γ; Θ ⊢ 𝑒1 : u32 ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : u32 ⇒ Γ2

Γ2 (𝑟 ) = ∅ Γ2; Θ ⊢ 𝑟 rnic Δ; Γ2; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ2 ⊢𝜔 𝑝 : [𝜏si ]

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2 ] : &𝑟 𝜔 [𝜏si ] ⇒ Γ2 [𝑟 ↦→ { ℓ }]

The proof proceeds along similar lines as for T-BorrowIndex. We proceed based on whether or not
𝑒1 and 𝑒2 are values.

If 𝑒1 is not a value, then we can decompose our whole expression into the evaluation context
&𝜌 𝜔 𝑝 [□..𝑒2] and redex 𝑒1. Then, by applying our induction hypothesis to 𝑒1, we know either that
𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former case, this satisfies our requirement since
we can plug 𝑒 ′ back into our evaluation context. In the latter case, we can step with E-EvalCtxAbort.

If 𝑒1 is a value and 𝑒2 is not a value, then we can decompose our whole expression into the
evaluation context &𝜌 𝜔 𝑝 [𝑣1..□] and redex 𝑒2. Then, by applying our induction hypothesis to 𝑒2,
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we know either that 𝑒2 steps to some 𝑒 ′2 or is an abort! expression. In the former case, this satisfies
our requirement since we can plug 𝑒 ′ back into our evaluation context. In the latter case, we can
step with E-EvalCtxAbort.

If 𝑒1 and 𝑒2 are values, we would like to step with one of:
E-BorrowSlice
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2 ] ) → (𝜎 ; ptr R[𝑛1 ..𝑛2 ] )

E-BorrowSliceOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 𝑛1 < 0 ∨ 𝑛1 > 𝑛 ∨ 𝑛2 < 0 ∨ 𝑛2 > 𝑛 ∨ 𝑛1 > 𝑛2

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2 ] ) → (𝜎 ; abort!(“attempted to slice out of bounds”) )

Since 𝑒1 is a value, we can apply Lemma E.15 to get Σ; • ⊢ Γ ▷ Γ1. Then, since 𝑒2 is also a value,
we can apply Lemma E.15 to get Σ; • ⊢ Γ1 ▷ Γ2. Then, by transitivity, we get Σ; • ⊢ Γ ▷ Γ2. Then,
applying Lemma E.27 gives us Σ ⊢ 𝜎 : Γ2.
Then, we can apply Lemma E.4 to Δ; 𝜔 ; Γ2 ⊢𝑝 { ℓ } ⇒ , Δ; Γ2 ⊢𝜔 𝑝 : [𝜏si], and Σ ⊢ 𝜎 : Γ2 to get

𝜎 ⊢ 𝑝 ⇓ R ↦→ _[𝑣]. By Lemma E.1, we know that 𝑣 = [𝑣0 , . . . , 𝑣𝑛] since the type tells us the shape
of the resultant value.
Since we wish to step with one of E-BorrowSlice and E-BorrowSliceOOB, we should observe

that we now have their shared requirement: 𝜎 ⊢ 𝑝 ⇓ R ↦→ _[[𝑣0 , . . . , 𝑣𝑛]]. Their other obligations
are a bounds check which together are a tautology (i.e. one of them must hold). Thus, we can step
with the appropriate rule based on whether or not the bounds check succeeds.

Case T-IndexCopy:
From premise:

T-IndexCopy
Σ; Δ; Γ; Θ ⊢ 𝑒 : u32 ⇒ Γ′ Δ; Γ′; Θ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ′ ⊢shrd 𝑝 : 𝜏xi 𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si ] copyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝑝 [𝑒 ] : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context 𝑝 [□] and redex 𝑒 . Then, by applying our induction hypothesis to 𝑒 , we
know either that 𝑒 steps to some 𝑒 ′ or is an abort! expression. In the former case, this satisfies our
requirement since we can plug 𝑒 ′ back into our evaluation context. In the latter case, we can step
with E-EvalCtxAbort.

If 𝑒 is a value, we would like to step with one of:
E-IndexCopy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛𝑖 , . . . , 𝑣𝑛 ] ]

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖 ] ) → (𝜎 ; 𝑣𝑛𝑖 )

E-IndexCopyOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖 ] ) → (𝜎 ; abort!(“attempted to index out of bounds”) )

Since 𝑒 is a value, we can apply Lemma E.15 to get Σ; • ⊢ Γ ▷ Γ′. Applying Lemma E.27, then gives
us Σ ⊢ 𝜎 : Γ′.
Then, we can apply Lemma E.4 to Δ; 𝜔 ; Γ′ ⊢𝑝 { ℓ } ⇒ , Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi, and Σ ⊢ 𝜎 : Γ′ to get

𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[𝑣]. By Lemma E.1, we know that 𝑣 = [𝑣0 , . . . , 𝑣𝑛] since the type tells us the shape
of the resultant value.
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Since we wish to step with one of E-IndexCopy and E-IndexCopyOOB, we should observe that we
now have their shared requirement: 𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[[𝑣0 , . . . , 𝑣𝑛]]. Their other obligations are a
bounds check which together are a tautology (i.e. one of them must hold). Thus, we can step with
the appropriate rule based on whether or not the bounds check succeeds.

Case T-Seq:
From premise:

T-Seq
Σ; Δ; Γ; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1

Σ; Δ; gc-loansΘ (Γ1) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ; Θ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression
into the evaluation context □; 𝑒2 and redex 𝑒1. Then, by applying our induction hypothesis to 𝑒1,
we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former case, this satisfies
our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the latter case, we can
step with E-EvalCtxAbort.

If 𝑒1 is a value, we can step with:
E-Seq

Σ ⊢ (𝜎 ; 𝑣; 𝑒 ) → (𝜎 ; 𝑒 )

Case T-Branch:
From premise:

T-Branch
Σ; Δ; Γ; Θ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ1; Θ ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Δ; Γ3; Θ ⊢+ 𝜏si3 { 𝜏si ⊣ Γ′3 Γ′2 ⋓ Γ′3 = Γ′

Σ; Δ; Γ; Θ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression
into the evaluation context if □ { 𝑒2 } else { 𝑒3 } and redex 𝑒1. Then, by applying our induction
hypothesis to 𝑒1, we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former
case, this satisfies our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the
latter case, we can step with E-EvalCtxAbort.

If 𝑒1 is a value, we would like to step with one of:
E-IfTrue

Σ ⊢ (𝜎 ; if true { 𝑒1 } else { 𝑒2 } ) → (𝜎 ; 𝑒1 )

E-IfFalse

Σ ⊢ (𝜎 ; if false { 𝑒1 } else { 𝑒2 } ) → (𝜎 ; 𝑒2 )

Since 𝑒1 is a value, applying Lemma E.1 tells us that 𝑒1 is either true or false. In the former case,
we can step with E-IfTrue and in the latter case, we can step with E-IfFalse

Case T-Let:
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From premise:
T-Let

Σ; Δ; Γ; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Δ; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si𝑎 ⊣ Γ′1
∀𝑟 ∈ free-regions(𝜏si𝑎 ) . Γ′1 ⊢ 𝑟 rnrb Σ; Δ; gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression
into the evaluation context let 𝑥 : 𝜏si𝑎 = □; 𝑒2 and redex 𝑒1. Then, by applying our induction
hypothesis to 𝑒1, we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former
case, this satisfies our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the
latter case, we can step with E-EvalCtxAbort.

If 𝑒1 is a value, we can step with:
E-Let

Σ ⊢ (𝜎 ; let 𝑥 : 𝜏si𝑎 = 𝑣; 𝑒 ) → (𝜎 , 𝑥 ↦→ 𝑣; shift 𝑒 )

Case T-LetRegion:
From premise:

T-LetRegion
Σ; Δ; Γ , 𝑟 ↦→ {}; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ }

Σ; Δ; Γ; Θ ⊢ letrgn <𝑟> { 𝑒 } : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context letrgn <𝑟> { □ } and redex 𝑒 . Then, by applying our induction hypothesis
to 𝑒 , we know either that 𝑒 steps to some 𝑒 ′ or is an abort! expression. In the former case, this
satisfies our requirement since we can plug 𝑒 ′ back into our evaluation context. In the latter case,
we can step with E-EvalCtxAbort.

If 𝑒 is a value, we can step with:
E-LetRegion

Σ ⊢ (𝜎 ; letrgn <𝑟> { 𝑣 } ) → (𝜎 ; 𝑣 )

Case T-Assign:
From premise:

T-Assign
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ1 Γ1 (𝜋 ) = 𝜏sx 𝜏sx = &𝑟 𝜔 𝜏xi =⇒ 𝑟 is unique to 𝜋 in Γ1

Δ; Γ1 ▷− ∗𝜋 ; Θ ⊢= 𝜏si { 𝜏sx ⊣ Γ′ (𝜏sx = 𝜏sd ∨ Δ; Γ′; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 })
Σ; Δ; Γ; Θ ⊢ 𝜋 ≔ 𝑒 : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si ]

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context 𝑝 ≔ □ and redex 𝑒 . Then, by applying our induction hypothesis to 𝑒 , we
know either that 𝑒 steps to some 𝑒 ′ or is an abort! expression. In the former case, this satisfies our
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requirement since we can plug 𝑒 ′ back into our evaluation context. In the latter case, we can step
with E-EvalCtxAbort.

If 𝑒 is a value, we would like to step with:
E-Assign

𝜎 ⊢ 𝑝 ⇓ R ↦→ V[_] R = R□ [𝑥 ]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣 ) → (𝜎 [𝑥 ↦→ V [𝑣 ] ]; ( ) )

Since 𝑒 is a value, we can apply Lemma E.15 to get Σ; • ⊢ Γ ▷ Γ′. Applying Lemma E.27, then gives
us Σ ⊢ 𝜎 : Γ′.
Then, we can apply Lemma E.4 to Δ; 𝜔 ; Γ′ ⊢𝑝 { ℓ } ⇒ , Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi, and Σ ⊢ 𝜎 : Γ′ to get

𝜎 ⊢ 𝑝 ⇓ R ↦→ V[_].

Case T-ForArray:
From premise:

T-ForArray
Σ; Δ; Γ; Θ ⊢ 𝑒1 : [𝜏si; 𝑛] ⇒ Γ1 ∀𝑟 ∈ free-regions(𝜏si) . Γ1 ⊢ 𝑟 rnrb

Σ; Δ; Γ1 , 𝑥 : 𝜏si; Θ ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ1

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression into
the evaluation context for 𝑥 in □ { 𝑒2 } and redex 𝑒1. Then, by applying our induction hypothesis
to 𝑒1, we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former case, this
satisfies our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the latter case,
we can step with E-EvalCtxAbort.

If 𝑒1 is a value, we would like to step with one of:
E-ForArray

Σ ⊢ (𝜎 ; for 𝑥 in [𝑣0 , . . . , 𝑣𝑛 ] { 𝑒 } ) → (𝜎 , 𝑥 ↦→ 𝑣0; shift 𝑒 ; for 𝑥 in [𝑣1 , . . . , 𝑣𝑛 ] { 𝑒 } )

E-ForEmptyArray

Σ ⊢ (𝜎 ; for 𝑥 in [] { 𝑒 } ) → (𝜎 ; ( ) )

Since 𝑒1 is a value, then by Lemma E.1, we know that 𝑒1 is of the form [𝑣1 , . . . , 𝑣𝑛]. If 𝑛 > 0, then
we can step with E-ForArray, and if 𝑛 = 0, then we can step with E-ForEmptyArray.

Case T-ForSlice:
From premise:

T-ForSlice
Σ; Δ; Γ; Θ ⊢ 𝑒1 : &𝜌 𝜔 [𝜏si ] ⇒ Γ1 ∀𝑟 ∈ free-regions(&𝜌 𝜔 𝜏si) . Γ1 ⊢ 𝑟 rnrb

Σ; Δ; Γ1 , 𝑥 : &𝜌 𝜔 𝜏si; Θ ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sx1

Σ; Δ; Γ; Θ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ2

We proceed based on whether or not 𝑒1 is a value. If it is not, we can decompose our expression into
the evaluation context for 𝑥 in □ { 𝑒2 } and redex 𝑒1. Then, by applying our induction hypothesis
to 𝑒1, we know either that 𝑒1 steps to some 𝑒 ′1 or is an abort! expression. In the former case, this
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satisfies our requirement since we can plug 𝑒 ′1 back into our evaluation context. In the latter case,
we can step with E-EvalCtxAbort.

If 𝑒1 is a value, we would like to step with one of:
E-ForSlice

𝜎 ⊢ R ⇓ _ ↦→ _[ [𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛 ] ] 𝑖 < 𝑗 𝑖′ = 𝑖 + 1

Σ ⊢ (𝜎 ; for 𝑥 in ptr R[𝑖 .. 𝑗 ] { 𝑒 } ) → (𝜎 , 𝑥 ↦→ ptr R[𝑖 ]; shift 𝑒 ; for 𝑥 in ptr R[𝑖′.. 𝑗 ] { 𝑒 } )

E-ForEmptySlice

Σ ⊢ (𝜎 ; for 𝑥 in ptr 𝜋 [𝑛..𝑛] { 𝑒 } ) → (𝜎 ; ( ) )

If 𝑒1 is a value, then by Lemma E.1, we know that 𝑒1 is of the form ptr R[𝑛1 ..𝑛2]. Further, by
inversion of T-Pointer for the typing derivation of 𝑒1, we get Σ; Γ ⊢ R[𝑖 .. 𝑗] : [𝜏si]. By inversion
of WF-RefSliceArray or WF-RefSliceSlice (one of which must apply since the referent ends in a
slice), we know that 𝑖 ≤ 𝑗 . If 𝑖 < 𝑗 , we stepwith E-ForSlice and if 𝑖 = 𝑗 , we stepwith E-ForEmptySlice.

Case T-Closure:
From premise:

T-Closure
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 free-nc-varsΓ (𝑒) \ 𝑥 = 𝑥𝑛𝑐

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 )))

F𝑐 = 𝑟 ↦→ Γ (𝑟 ) , 𝑥𝑓 : Γ (𝑥𝑓 ) ∀𝑟𝑝 ∈
𝑛⋃
𝑖=1

free-regions(𝜏si𝑖 ) ∪ free-regions(𝜏si𝑟 ) . Γ (𝑟𝑝 ) = ∅

Σ; Δ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐 )† ] ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ′

We want to step with:
E-Closure

𝑥𝑓 = free-vars(𝑒) 𝑥𝑛𝑐 = free-nc-vars𝜎 (𝑒) 𝜍𝑐 = 𝜎 | 𝑥𝑓
Σ ⊢ (𝜎 ; |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ) → (𝜎 [𝑥𝑛𝑐 ↦→ dead]; ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩ )

Since free-vars(·) and free-nc-vars𝜎 (·) are total, we can always step with E-Closure.

Case T-AppClosure:
From premise:

T-AppClosure
Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 : ∀<> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ𝑐→ 𝜏si

𝑓
⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 . . . 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si
𝑖′ ⇒ Γ𝑖 Δ; Γ𝑖 ; Θ ⊢⊞ 𝜏si

𝑖′ { 𝜏si𝑖 ⊣ Γ′𝑖
∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ′𝑛 ⊢ 𝑟 rnrb

Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
⇒ Γ′𝑛

We proceed based on whether or not 𝑒𝑓 is a value. If it is not, we can decompose our expression into
the evaluation context □(𝑒1 , . . . , 𝑒𝑛) and redex 𝑒𝑓 . Then, by applying our induction hypothesis to
𝑒𝑓 , we know either that 𝑒𝑓 steps to some 𝑒 ′

𝑓
or is an abort! expression. In the former case, this

satisfies our requirement since we can plug 𝑒 ′
𝑓
back into our evaluation context. In the latter case,

we can step with E-EvalCtxAbort.
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Next, we’ll proceed based on whether or not each expression 𝑒𝑖 is a value. If any of them are not,
we can decompose our expression into the evaluation context 𝑣 𝑓 (𝑣1 , . . . , 𝑣𝑚 , □ , 𝑒1 , . . . , 𝑒𝑛′)
and redex 𝑒𝑖 . Then, by applying our induction hypothesis to 𝑒𝑖 , we know either that 𝑒𝑖 steps
to some 𝑒 ′𝑖 or is an abort! expression. In the former case, this satisfies our requirement since
we can plug 𝑒 ′𝑖 back into our evaluation context. In the latter case, we can step with E-EvalCtxAbort.

If 𝑒𝑓 is a value and every 𝑒𝑖 is a value, we would like to step with one of:
E-AppClosure

𝑣𝑓 = ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩

Σ ⊢ (𝜎 ; 𝑣𝑓 (𝑣1 , . . . , 𝑣𝑛) ) → (𝜎 ♮ 𝜍𝑐 , 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 )

Since 𝑒𝑓 is a value, then by Lemma E.1, we know that it has the form ⟨𝜎𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | →
𝜏si𝑟 { 𝑒 } ⟩. Then, since all of the 𝑒𝑖 are values, then we can step using E-AppClosure.

Case T-AppFunction:
From premise:

T-AppFunction
Σ; Δ; Γ ⊢ Φ Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏si 𝛿 = · [Φ/𝜑 ] [𝜌/𝜚 ] [𝜏si/𝛼 ]
Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) → 𝜏si

𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝛿 (𝜏si1 ) . . . 𝛿 (𝜏si𝑖−1) ⊢ 𝑒𝑖 : 𝛿 (𝜏si𝑖 ) ⇒ Γ𝑖

∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ′𝑛 ⊢ 𝑟 rnrb Δ; Γ𝑛 ; Θ ⊢ 𝜚2 [𝜌/𝜚 ] :> 𝜚1 [𝜌/𝜚 ] ⊣ Γ𝑏

Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝛿 (𝜏si
𝑓
) ⇒ Γ𝑏

We proceed based on whether or not 𝑒𝑓 is a value. If it is not, we can decompose our expression
into the evaluation context □::<Φ , 𝜌 , 𝜏si>(𝑒1 , . . . , 𝑒𝑛) and redex 𝑒𝑓 . Then, by applying our
induction hypothesis to 𝑒𝑓 , we know either that 𝑒𝑓 steps to some 𝑒 ′

𝑓
or is an abort! expression.

In the former case, this satisfies our requirement since we can plug 𝑒 ′
𝑓
back into our evaluation

context. In the latter case, we can step with E-EvalCtxAbort.
Next, we’ll proceed based on whether or not each expression 𝑒𝑖 is a value. If

any of them are not, we can decompose our expression into the evaluation context
𝑣 𝑓 ::<Φ , 𝜌 , 𝜏si>(𝑣1 , . . . , 𝑣𝑚 , □ , 𝑒1 , . . . , 𝑒𝑛′) and redex 𝑒𝑖 . Then, by applying our induc-
tion hypothesis to 𝑒𝑖 , we know either that 𝑒𝑖 steps to some 𝑒 ′𝑖 or is an abort! expression. In the
former case, this satisfies our requirement since we can plug 𝑒 ′𝑖 back into our evaluation context. In
the latter case, we can step with E-EvalCtxAbort.

If 𝑒𝑓 is a value and every 𝑒𝑖 is a value, we would like to step with one of:
E-AppFunction

Σ(𝑓 ) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛) → 𝜏s𝑟 where 𝜚 : 𝜚 ′ { 𝑒 }

Σ ⊢ (𝜎 ; 𝑓 ::<Φ , 𝑟 ′ , 𝜏s> (𝑣1 , . . . , 𝑣𝑛) ) → (𝜎 ♮ 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 [Φ/𝜑 ] [𝑟 ′/𝜚 ] [𝜏
s/𝛼 ] )

Since 𝑒𝑓 is a value, then by Lemma E.1, we know that it has the form 𝑓 . Then, since all of the 𝑒𝑖 are
values, then we can step using E-AppFunction.

Case T-Unit:
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From premise:
T-Unit

Σ; Δ; Γ; Θ ⊢ ( ) : unit ⇒ Γ

By inspection of the value grammar, we know that ( ) is already a value.

Case T-u32:
From premise:

T-u32

Σ; Δ; Γ; Θ ⊢ 𝑛 : u32 ⇒ Γ

By inspection of the value grammar, we know that 𝑛 is already a value.

Case T-True:
From premise:

T-True

Σ; Δ; Γ; Θ ⊢ true : bool ⇒ Γ

By inspection of the value grammar, we know that true is already a value.

Case T-False:
From premise:

T-False

Σ; Δ; Γ; Θ ⊢ false : bool ⇒ Γ

By inspection of the value grammar, we know that false is already a value.

Case T-Tuple:
From premise:

T-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ0; Θ ⊢ (𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛 ) ⇒ Γ𝑛

We’ll proceed based on whether or not each expression 𝑒𝑖 is a value. If any of them are not, we can
decompose our expression into the evaluation context (𝑣1 , . . . , 𝑣𝑚 , □ , 𝑒1 , . . . , 𝑒𝑛′) and redex 𝑒𝑖 .
Then, by applying our induction hypothesis to 𝑒𝑖 , we know either that 𝑒𝑖 steps to some 𝑒 ′𝑖 or to an
abort! expression. In either case, this satisfies our requirement, since we can plug 𝑒 ′𝑖 back into our
evaluation context.

If every expression 𝑒𝑖 is a value, then the whole expression is a value by the definition of values.

Case T-Array:
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From premise:
T-Array
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ; Θ ⊢ [𝑒1 , . . . , 𝑒𝑛 ] : [𝜏si; 𝑛] ⇒ Γ𝑛

We’ll proceed based on whether or not each expression 𝑒𝑖 is a value. If any of them are not, we can
decompose our expression into the evaluation context [𝑣1 , . . . , 𝑣𝑚 , □ , 𝑒1 , . . . , 𝑒𝑛′] and redex 𝑒𝑖 .
Then, by applying our induction hypothesis to 𝑒𝑖 , we know either that 𝑒𝑖 steps to some 𝑒 ′𝑖 or to an
abort! expression. In either case, this satisfies our requirement, since we can plug 𝑒 ′𝑖 back into our
evaluation context.

If every expression 𝑒𝑖 is a value, then the whole expression is a value by the definition of values.

Case T-Abort:
From premise:

T-Abort

Σ; Δ; Γ; Θ ⊢ abort!(str) : 𝜏sx ⇒ Γ

By definition, abort!( . . . ) is an abort! expression.

Case T-Framed:
From premise:

T-Framed
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ ♮ F′

Σ; Δ; Γ; Θ ⊢ framed 𝑒 : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context framed □ and redex 𝑒 . Then, by applying our induction hypothesis to 𝑒 , we
know either that 𝑒 steps to some 𝑒 ′ or to an abort! expression. In either case, this satisfies our
requirement, since we can plug 𝑒 ′ back into our evaluation context.

If 𝑒 is a value, then we would like to step with:
E-Framed

Σ ⊢ (𝜎 ♮ 𝜍 ; framed 𝑣 ) → (𝜎 ; 𝑣 )

In order to do so, we need to know 𝑥 ∈ dom(𝜎). Fortunately, we know from our assumption that
Σ ⊢ 𝜎 : Γ (via WF-Stack). The premise of WF-Stack tells us that dom(𝜎) = dom(Γ), and thus the
𝑥 ∈ dom(Γ) from the premise of T-Framed is sufficient to tell us that 𝑥 ∈ dom(𝜎). Thus, we can
step with E-Framed.

Case T-Pointer:
From premise:

T-Pointer
Σ; Γ ⊢ R□ [𝜋 ] : 𝜏xi 𝜔𝜋 ∈ Γ (𝑟 )

Σ; Δ; Γ; Θ ⊢ ptr R□ [𝜋 ] : &𝑟 𝜔 𝜏xi ⇒ Γ
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By inspection of the value grammar, we know that ptr 𝜋 is already a value.

Case T-ClosureValue:
From premise:

T-ClosureValue
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 = dom(F𝑐 ) |var

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 ))) = dom(F𝑐 ) |rgn
Σ; Γ ⊢ 𝜍𝑐 : F𝑐 Σ; Δ; Γ ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ ⟨𝜍𝑐 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ

By inspection of the value grammar, we know that ⟨𝜎 , |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } ⟩ is
already a value.

Case T-Dead:
From premise:

T-Dead

Σ; Δ; Γ; Θ ⊢ 𝑣 : 𝜏si
† ⇒ Γ

The type 𝜏si† is not in the grammar of 𝜏si. Thus, we have a contradiction.

Case T-Drop:
From premise:

T-Drop
Γ (𝜋 ) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

By R-Env, we have that Σ; • ⊢ Γ ▷ Γ [𝜋 ↦→ 𝜏si
†

𝜋 ]. Then, applying Lemma E.27 with Σ ⊢ 𝜎 : Γ (from
our premise) gives us Σ ⊢ 𝜎 : Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]. We can then apply our induction hypothesis to this and

Σ; •; Γ [𝜋 ↦→ 𝜏si
†

𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓 to reach our goal.

Case T-Left:
From premise:

T-Left
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si1 ⇒ Γ′

Σ; Δ; Γ; Θ ⊢ Left::<𝜏si1 , 𝜏si2 > (𝑒) : Either<𝜏si1 , 𝜏si2 > ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression
into the evaluation context Left::<𝜏si1 , 𝜏si2 >(□) and redex 𝑒 . Then, by applying our induction
hypothesis to 𝑒 , we know either that 𝑒 steps to some 𝑒 ′ or to an abort! expression. In either case,
this satisfies our requirement, since we can plug 𝑒 ′ back into our evaluation context.
If 𝑒 is a value, then we know that the whole expression Left::<𝜏si1 , 𝜏si2 >(𝑣) is a value and thus

we are done.

Case T-Right:
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From premise:
T-Right

Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si2 ⇒ Γ′

Σ; Δ; Γ; Θ ⊢ Right::<𝜏si1 , 𝜏si2 > (𝑒) : Either<𝜏si1 , 𝜏si2 > ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression
into the evaluation context Right::<𝜏si1 , 𝜏si2 >(□) and redex 𝑒 . Then, by applying our induction
hypothesis to 𝑒 , we know either that 𝑒 steps to some 𝑒 ′ or to an abort! expression. In either case,
this satisfies our requirement, since we can plug 𝑒 ′ back into our evaluation context.

If 𝑒 is a value, then we know that the whole expression Right::<𝜏si1 , 𝜏si2 >(𝑣) is a value and thus
we are done.

Case T-Match:
From premise:

T-Match
Σ; Δ; Γ; Θ ⊢ 𝑒 : Either<𝜏si

𝑙
, 𝜏si𝑟 > ⇒ Γ′ ∀𝑟 ∈ free-regions(Either<𝜏si

𝑙
, 𝜏si𝑟 >) . Γ′ ⊢ 𝑟 rnrb

Σ; Δ; Γ′ , 𝑥1 : 𝜏si
𝑙
; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 , 𝑥1 : 𝜏sd

𝑙

Σ; Δ; Γ′ , 𝑥2 : 𝜏si𝑟 ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥2 : 𝜏sd𝑟 𝜏si = 𝜏si1 ∨ 𝜏si = 𝜏si2
Δ; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si ⊣ Γ′1 Δ; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Γ′1 ⋓ Γ′2 = Γ′

Σ; Δ; Γ; Θ ⊢ match 𝑒 { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } : 𝜏si ⇒ Γ′

We proceed based on whether or not 𝑒 is a value. If it is not, we can decompose our expression into
the evaluation context match□ { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } and redex 𝑒 . Then, by applying
our induction hypothesis to 𝑒 , we know either that 𝑒 steps to some 𝑒 ′ or to an abort! expression.
In either case, this satisfies our requirement, since we can plug 𝑒 ′ back into our evaluation context.

If 𝑒 is a value, then we would like to step with either:
E-MatchLeft

Σ ⊢ (𝜎 ; match Left::<𝜏si1 , 𝜏si2 > (𝑣) { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } ) → (𝜎 , 𝑥1 ↦→ 𝑣; shift 𝑒1 )

E-MatchRight

Σ ⊢ (𝜎 ; match Right::<𝜏si1 , 𝜏si2 > (𝑣) { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } ) → (𝜎 , 𝑥2 ↦→ 𝑣; shift 𝑒2 )

Since 𝑒 is a value, applying Lemma E.1 tells us that 𝑒 is either of the form Left::<𝜏si1 , 𝜏si2 >(𝑣) or
Right::<𝜏si1 , 𝜏si2 >(𝑣). In the former case, we can step with E-MatchLeft and in the latter case, we
can step with E-MatchRight.
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E.15 Preservation
Lemma E.69 (Preservation). If Σ; •; Γ; Θ ⊢ 𝑒 : 𝜏 si1 ⇒ Γ𝑓 𝑎𝑛𝑑Σ ⊢ 𝜎 : Γ and Σ; Γ ⊢ 𝑣 : Θ

and Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎 ′; 𝑒 ′ ), then there exists Γ𝑖 such that Σ ⊢ 𝜎 ′ : Γ𝑖 and Σ; Γ𝑖 ⊢ 𝑣 : Θ and

Σ; •; Γ𝑖 ; Θ ⊢ 𝑒 ′ : 𝜏 si2 ⇒ Γ′
𝑓
and •; Γ′

𝑓
; Θ ⊢+ 𝜏 si2 { 𝜏 si1 ⊣ Γ𝑠 and there exists Γ𝑜 such that Γ𝑓 = Γ𝑠 ⋓ Γ𝑜 .

Proof. We proceed by induction on the derivation Σ; •; Γ; Θ ⊢ 𝑒 : 𝜏 ⇒ Γ𝑓

Case T-Move:

From premise:

T-Move
Δ; Γ; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 }

Γ (𝜋 ) = 𝜏si noncopyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝜋 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
† ]

Since 𝑒 = 𝜋 , by inspection of the reduction rules, we know that 𝑒 steps with the following rule:

E-Move
𝜎 ⊢ 𝜋 ⇓ 𝜋 ↦→ _[𝑣 ]

Σ ⊢ (𝜎 ; 𝜋 ) → (𝜎 [𝜋 ↦→ dead]; 𝑣 )

We then pick Γ𝑖 to be Γ [𝜋 ↦→ 𝜏si
† ] , and need to show:

Σ ⊢ 𝜎 [𝜋 ↦→ dead] : Γ [𝜋 ↦→ 𝜏si
† ] Applying Lemma E.27 to Σ; • ⊢ Γ ▷ Γ [𝜋 ↦→ 𝜏si

† ]
(immediate by R-Env) and Σ ⊢ 𝜎 : Γ (from premise)
gives us Σ ⊢ 𝜎 : Γ [𝜋 ↦→ 𝜏si

† ]. Then, since we know
Σ; •; Γ [𝜋 ↦→ 𝜏si

† ]; Θ ⊢ dead : 𝜏si† ⇒ Γ [𝜋 ↦→ 𝜏si
† ]

(by T-Dead), we can conclude Σ ⊢ 𝜎 [𝜋 ↦→ dead] :
Γ [𝜋 ↦→ 𝜏si

† ].
Σ; Γ [𝜋 ↦→ 𝜏si

† ] ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖

⇒ Γ.
By R-Env, we have that Σ; • ⊢ Γ ▷ Γ [𝜋 ↦→ 𝜏si

† ] .
Thus, we can apply Lemma E.25 to each of the typing
judgments and then apply WF-Temporaries to get
Σ; Γ [𝜋 ↦→ 𝜏si

† ] ⊢ 𝑣 : Θ.
Σ; •; Γ [𝜋 ↦→ 𝜏si

† ]; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si
† ] Applying Lemma E.4 to •; uniq; Γ ⊢𝜋 { uniq𝜋 } ⇒ ,

•; Γ ⊢uniq 𝜋 : 𝜏si (immediate by TC-Place with Γ(𝜋) =
𝜏si), and Σ ⊢ 𝜎 : Γ gives us Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏si ⇒
Γ. Then, by applying Lemma E.25 with Σ; • ⊢ Γ ▷

Γ [𝜋 ↦→ 𝜏si
† ] (immediate by R-Env), we can conclude

Σ; •; Γ [𝜋 ↦→ 𝜏si
† ]; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ [𝜋 ↦→ 𝜏si

† ].
•; Γ [𝜋 ↦→ 𝜏si

† ]; Θ ⊢+ 𝜏si { 𝜏si ⊣ Γ [𝜋 ↦→ 𝜏si
† ] Immediate by RR-Refl.

∃Γ𝑜 .Γ [𝜋 ↦→ 𝜏si
† ] ⋓ Γ𝑜 = Γ [𝜋 ↦→ 𝜏si

† ] Γ𝑜 = Γ [𝜋 ↦→ 𝜏si
† ]

Case T-Copy:
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From premise:

T-Copy
Δ; Γ; Θ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ ⊢shrd 𝑝 : 𝜏si copyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝑝 : 𝜏si ⇒ Γ

Since 𝑒 = 𝑝 , by inspection of the reduction rules, we know that 𝑒 steps with the following rule:

E-Copy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[𝑣 ]

Σ ⊢ (𝜎 ; 𝑝 ) → (𝜎 ; 𝑣 )

We then pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; Γ ⊢ 𝑣 : Θ Immediate from our premise.

Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ Applying Lemma E.4 to •; shrd; Γ ⊢𝑝 { ℓ } ⇒ , •; Γ ⊢shrd 𝑝 : 𝜏si, and
Σ ⊢ 𝜎 : Γ gives us Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ.

•; Γ; Θ ⊢+ 𝜏si { 𝜏si ⊣ Γ Immediate by RR-Refl.
∃Γ𝑜 .Γ ⋓ Γ𝑜 = Γ Γ𝑜 = Γ

Case T-Borrow:

From premise:

T-Borrow
Γ (𝑟 ) = ∅ Γ; Θ ⊢ 𝑟 rnic

Δ; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ ⊢𝜔 𝑝 : 𝜏xi

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }]

Since 𝑒 = &𝜌 𝜔 𝑝 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Borrow
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[_]

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 ) → (𝜎 ; ptr R )

We then pick Γ𝑖 to be Γ [𝑟 ↦→ { ℓ }] , and need to show:



Oxide: The Essence of Rust 1:97

Σ ⊢ 𝜎 : Γ [𝑟 ↦→ { ℓ }] Apply Lemma E.63 to Σ ⊢ 𝜎 : Γ (from our premise) and ⊢
Σ; •; Γ [𝑟 ↦→ { ℓ }]; Θ (from our premise) gives us Σ ⊢ 𝜎 :
Γ [𝑟 ↦→ { ℓ }].

Σ; Γ [𝑟 ↦→ { ℓ }] ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖

⇒ Γ. We can
then apply Lemma E.62 to each of the typing judgments along
with •; Γ; Θ ⊢𝜔 𝑝 ⇒ { ℓ } and Γ; Θ ⊢ 𝑟 rnic and Γ(𝑟 ) = ∅ (all
from the premise of T-Borrow) to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ [𝑟 ↦→
{ ℓ }]; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ [𝑟 ↦→ { ℓ }]. We can then

apply WF-Temporaries to get Σ; Γ [𝑟 ↦→ { ℓ }] ⊢ 𝑣 : Θ.
Σ; •; Γ𝑖 ; Θ ⊢ ptr R : &𝑟 𝜔 𝜏xi ⇒ Γ𝑖 Applying Lemma E.5 to Σ ⊢ 𝜎 : Γ, and 𝜎 ⊢ 𝑝 ⇓ R ↦→ _[_] gives

us Σ; Γ ⊢ R□ [𝜋] : 𝜏xi. Then, note that referent well-formedness
does not depend on the contents of loan sets. This means we
can also conclude Σ; Γ [𝑟 ↦→ { ℓ }] ⊢ R□ [𝜋] : 𝜏xi.
Applying Lemma E.6 to Σ ⊢ 𝜎 : Γ, 𝜎 ⊢ 𝑝 ⇓ R ↦→ _[_], and
•; 𝜔 ; Γ ⊢𝑝 { ℓ } ⇒ gives us R = R□ [𝜋] and 𝜔𝜋 ∈ { ℓ }.
Finally, we can apply T-Pointer to the two facts above to get
Σ; •; Γ [𝑟 ↦→ { ℓ }]; Θ ⊢ ptr R : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }].

•; Γ𝑖 ; Θ ⊢+ &𝑟 𝜔 𝜏xi { &𝑟 𝜔 𝜏xi ⊣ Γ𝑖 Immediate by RR-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

Case T-BorrowIndex:

From premise:

T-BorrowIndex
Σ; Δ; Γ; Θ ⊢ 𝑒 : u32 ⇒ Γ′ Γ′ (𝑟 ) = ∅ Γ′; Θ ⊢ 𝑟 rnic

Δ; Γ′; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi

𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si ]

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 [𝑒 ] : &𝑟 𝜔 𝜏si ⇒ Γ′ [𝑟 ↦→ { ℓ }]

Since 𝑒 = &𝜌 𝜔 𝑝 [𝑒𝑖 ], by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-BorrowIndex
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 0 ≤ 𝑛𝑖 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛𝑖 ] ) → (𝜎 ; ptr R[𝑛𝑖 ] )

E-BorrowIndexOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 𝑛𝑖 < 0 ∨ 𝑛𝑖 > 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 ∗ 𝑝 [𝑛𝑖 ] ) → (𝜎 ; abort!(“attempted to index out of bounds”) )

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-BorrowIndex, we pick Γ𝑖 to be Γ′[𝑟 ↦→ { ℓ }] , and need to show:
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Σ ⊢ 𝜎 : Γ′ [𝑟 ↦→ { ℓ }] Applying Lemma E.15 to the typing derivation (from T-
BorrowIndex) for 𝑒 (which we know is a value from E-
BorrowIndex) gives us Σ; • ⊢ Γ ▷ Γ′.
Then, applying Lemma E.27 to Σ; • ⊢ Γ ▷ Γ′ and Σ ⊢ 𝜎 : Γ
(from premise) gives us Σ ⊢ 𝜎 : Γ′.
Finally, applying Lemma E.63 to Σ ⊢ 𝜎 : Γ′ gives us Σ ⊢ 𝜎 :
Γ′[𝑟 ↦→ { ℓ }].

Σ; Γ′ [𝑟 ↦→ { ℓ }] ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-
BorrowIndex) for 𝑒 (which we know is a value from E-
BorrowIndex) gives us Σ; • ⊢ Γ ▷ Γ′.
Thus, we can apply Lemma E.25 to each of the typing judg-
ments to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′; • ⊢ 𝑣𝑖 : 𝜏si

𝑖
⇒ Γ′.

We can then apply Lemma E.62 to each of the typing judg-
ments along with •; Γ′; Θ ⊢𝜔 𝑝 ⇒ { ℓ } and Γ′; Θ ⊢ 𝑟 rnic
and Γ′(𝑟 ) = ∅ (all from the premise of T-BorrowIndex) to
get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′[𝑟 ↦→ { ℓ }]; • ⊢ 𝑣𝑖 : 𝜏si

𝑖
⇒

Γ′[𝑟 ↦→ { ℓ }]. We can then apply WF-Temporaries to get
Σ; Γ′[𝑟 ↦→ { ℓ }] ⊢ 𝑣 : Θ.

Σ; •; Γ𝑖 ; Θ ⊢ ptr R[𝑛𝑖 ] : &𝑟 𝜔 𝜏si ⇒ Γ𝑖 Applying Lemma E.15 to the typing derivation (from T-
BorrowIndex) for 𝑒 (which we know is a value from E-
BorrowIndex) gives us Σ; • ⊢ Γ ▷ Γ′.
Then, applying Lemma E.27 to Σ; • ⊢ Γ ▷ Γ′ and Σ ⊢ 𝜎 : Γ
(from premise) gives us Σ ⊢ 𝜎 : Γ′.
Applying Lemma E.5 to Σ ⊢ 𝜎 : Γ′, and 𝜎 ⊢ 𝑝 ⇓ R ↦→
_[[𝑣0 , . . . , 𝑣𝑛]] gives us Σ; Γ′ ⊢ R□ [𝜋] : 𝜏xi. Then, note that
referent well-formedness does not depend on the contents
of loan sets. This means we can also conclude Σ; Γ′[𝑟 ↦→
{ℓ }] ⊢ R□ [𝜋] : 𝜏xi. We can then applyWF-RefIndexArray or
WF-RefIndexSlice to get Σ; Γ′[𝑟 ↦→ { ℓ }] ⊢ R□ [𝜋] [𝑛𝑖 ] : 𝜏xi.
Applying Lemma E.6 to Σ ⊢ 𝜎 : Γ′, 𝜎 ⊢ 𝑝 ⇓ R ↦→
_[[𝑣0 , . . . , 𝑣𝑛]], and •; 𝜔 ; Γ′ ⊢𝑝 { ℓ } ⇒ gives us R = R[𝜋]
and 𝜔𝜋 ∈ { ℓ }.
Finally, we can apply T-Pointer to the two facts above to get
Σ; •; Γ [𝑟 ↦→ { ℓ }]; Θ ⊢ ptr R[𝑛𝑖 ] : &𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→
{ ℓ }].

•; Γ𝑖 ; Θ ⊢+ &𝑟 𝜔 𝜏si { &𝑟 𝜔 𝜏si ⊣ Γ𝑖 Immediate by RR-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

For E-BorrowIndexOOB, we pick Γ𝑖 to be Γ , and need to show:
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Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; Γ ⊢ 𝑣 : Θ Immediate from our premise.

Σ; •; Γ; Θ ⊢ abort!( . . . ) : &𝑟 𝜔 𝜏si ⇒ Γ An abort! expression is well-typed (at any type) via the
rule T-Abort.

•; Γ; Θ ⊢+ &𝑟 𝜔 𝜏si { &𝑟 𝜔 𝜏si ⊣ Γ Immediate by RR-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

Case T-BorrowSlice:

From premise:

T-BorrowSlice
Σ; Δ; Γ; Θ ⊢ 𝑒1 : u32 ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : u32 ⇒ Γ2

Γ2 (𝑟 ) = ∅ Γ2; Θ ⊢ 𝑟 rnic Δ; Γ2; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ2 ⊢𝜔 𝑝 : [𝜏si ]

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2 ] : &𝑟 𝜔 [𝜏si ] ⇒ Γ2 [𝑟 ↦→ { ℓ }]

Since 𝑒 = &𝑟 𝜔 𝑝 [𝑒1 ..𝑒2], by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-BorrowSlice
𝜎 ⊢ 𝑝 ⇓ R ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2 ] ) → (𝜎 ; ptr R[𝑛1 ..𝑛2 ] )

E-BorrowSliceOOB
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛 ] ] 𝑛1 < 0 ∨ 𝑛1 > 𝑛 ∨ 𝑛2 < 0 ∨ 𝑛2 > 𝑛 ∨ 𝑛1 > 𝑛2

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑛1 ..𝑛2 ] ) → (𝜎 ; abort!(“attempted to slice out of bounds”) )

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-BorrowSlice, we pick Γ𝑖 to be Γ2 [𝑟 ↦→ { ℓ }] , and need to show:
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Σ ⊢ 𝜎 : Γ2 [𝑟 ↦→ { ℓ }] Applying Lemma E.15 to the typing derivation (from
T-BorrowSlice) for 𝑒1 (which we know is a value from
E-BorrowSlice) gives us Σ; • ⊢ Γ ▷ Γ1. Then, ap-
plying Lemma E.15 to the typing derivation (from T-
BorrowSlice) for 𝑒2 (which we know is a value from
E-BorrowSlice) gives us Σ; • ⊢ Γ1 ▷ Γ2. Then, by tran-
sitivity, we have Σ; • ⊢ Γ ▷ Γ2.
Then, applying Lemma E.27 to Σ; • ⊢ Γ▷ Γ2 and Σ ⊢ 𝜎 :
Γ (from premise) gives us Σ ⊢ 𝜎 : Γ2. Finally, applying
Lemma E.63 to Σ ⊢ 𝜎 : Γ2 gives us Σ ⊢ 𝜎 : Γ2 [𝑟 ↦→ { ℓ }].

Σ; Γ2 [𝑟 ↦→ { ℓ }] ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from
T-BorrowSlice) for 𝑒1 (which we know is a value from
E-BorrowSlice) gives us Σ; • ⊢ Γ ▷ Γ1. Then, ap-
plying Lemma E.15 to the typing derivation (from T-
BorrowSlice) for 𝑒2 (which we know is a value from
E-BorrowSlice) gives us Σ; • ⊢ Γ1 ▷ Γ2. Then, by tran-
sitivity, we have Σ; • ⊢ Γ ▷ Γ2.
Then, we apply Lemma E.25 to each of the typing judg-
ments to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ2; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 :
𝜏si
𝑖
⇒ Γ2.

We can then apply Lemma E.62 to each of the typing
judgments along with •; Γ2; Θ ⊢𝜔 𝑝 ⇒ { ℓ } and
Γ2; Θ ⊢ 𝑟 rnic and Γ2 (𝑟 ) = ∅ (all from the premise
of T-BorrowSlice) to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ2 [𝑟 ↦→
{ ℓ }]; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ2 [𝑟 ↦→ { ℓ }]. We can

then apply WF-Temporaries to get Σ; Γ2 [𝑟 ↦→ { ℓ }] ⊢
𝑣 : Θ.

Σ; •; Γ𝑖 ; Θ ⊢ ptr R[𝑛1 ..𝑛2 ] : &𝑟 𝜔 [𝜏si ] ⇒ Γ𝑖 Applying Lemma E.15 to the typing derivation (from
T-BorrowSlice) for 𝑒1 (which we know is a value from
E-BorrowSlice) gives us Σ; • ⊢ Γ ▷ Γ1. Then, ap-
plying Lemma E.15 to the typing derivation (from T-
BorrowSlice) for 𝑒2 (which we know is a value from
E-BorrowSlice) gives us Σ; • ⊢ Γ1 ▷ Γ2. Then, by tran-
sitivity, we have Σ; • ⊢ Γ ▷ Γ2.
Then, applying Lemma E.27 to Σ; • ⊢ Γ ▷ Γ2 and Σ ⊢
𝜎 : Γ (from premise) gives us Σ ⊢ 𝜎 : Γ2.
Applying Lemma E.5 to Σ ⊢ 𝜎 : Γ2, and 𝜎 ⊢ 𝑝 ⇓ R ↦→
_[[𝑣0 , . . . , 𝑣𝑛]] gives us Σ; Γ2 ⊢ R□ [𝜋] : 𝜏xi. Then,
note that referent well-formedness does not depend
on the contents of loan sets. This means we can also
conclude Σ; Γ2 [𝑟 ↦→ { ℓ }] ⊢ R□ [𝜋] : 𝜏xi. We can then
apply WF-RefSliceArray or WF-RefSliceSlice to get
Σ; Γ′[𝑟 ↦→ { ℓ }] ⊢ R□ [𝜋] [𝑛1..𝑛2] : 𝜏xi.
Applying Lemma E.6 to Σ ⊢ 𝜎 : Γ2, 𝜎 ⊢ 𝑝 ⇓ R ↦→
_[[𝑣0 , . . . , 𝑣𝑛]], and •; 𝜔 ; Γ2 ⊢𝑝 { ℓ } ⇒ gives us
𝜔𝜋 ∈ { ℓ }.
Finally, we can apply T-Pointer to the two facts above
to get Σ; •; Γ [𝑟 ↦→ { ℓ }]; Θ ⊢ ptr R[𝜋] [𝑛1..𝑛2] :
&𝑟 𝜔 𝜏xi ⇒ Γ [𝑟 ↦→ { ℓ }].

•; Γ𝑖 ; Θ ⊢+ &𝑟 𝜔 [𝜏si ] { &𝑟 𝜔 [𝜏si ] ⊣ Γ𝑖 Immediate by RR-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖
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For E-BorrowSliceOOB, we pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; Γ ⊢ 𝑣 : Θ Immediate from our premise.

Σ; •; Γ; Θ ⊢ abort!( . . . ) : &𝑟 𝜔 [𝜏si ] ⇒ Γ′ An abort! expression is well-typed (at any type) via the
rule T-Abort.

•; Γ; Θ ⊢+ &𝑟 𝜔 [𝜏si ] { &𝑟 𝜔 [𝜏si ] ⊣ Γ Immediate by RR-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

Case T-IndexCopy:

From premise:

T-IndexCopy
Σ; Δ; Γ; Θ ⊢ 𝑒 : u32 ⇒ Γ′ Δ; Γ′; Θ ⊢shrd 𝑝 ⇒ { ℓ }

Δ; Γ′ ⊢shrd 𝑝 : 𝜏xi 𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si ] copyableΣ 𝜏
si

Σ; Δ; Γ; Θ ⊢ 𝑝 [𝑒 ] : 𝜏si ⇒ Γ′

Since 𝑒 = 𝑝 [𝑒𝑖 ], by inspection of the reduction rules, we know that 𝑒 steps with the following rule:

E-IndexCopy
𝜎 ⊢ 𝑝 ⇓ _ ↦→ _[ [𝑣0 , . . . , 𝑣𝑛𝑖 , . . . , 𝑣𝑛 ] ]

Σ ⊢ (𝜎 ; 𝑝 [𝑛𝑖 ] ) → (𝜎 ; 𝑣𝑛𝑖 )

We then pick Γ𝑖 to be Γ′ , and need to show:

Σ ⊢ 𝜎 : Γ′ Applying Lemma E.15 to the typing derivation (from T-IndexCopy) for
𝑒 (which we know is a value from E-IndexCopy) gives us Σ; • ⊢ Γ ▷ Γ′.
Then, applying Lemma E.27 to Σ; • ⊢ Γ ▷ Γ′ and Σ ⊢ 𝜎 : Γ (from
premise) gives us Σ ⊢ 𝜎 : Γ′.

Σ; Γ′ ⊢ 𝑣 : Θ InvertingWF-Temporaries gives us∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si
𝑖−1 ⊢

𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-IndexCopy) for
𝑒 (which we know is a value from E-IndexCopy) gives us Σ; • ⊢ Γ ▷ Γ′.
Thus, we can apply Lemma E.25 to each of the typing judgments to
get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′.

Finally, applying WF-Temporaries gives us Σ; Γ′ ⊢ 𝑣 : Θ.
Σ; •; Γ′; Θ ⊢ 𝑣𝑛𝑖 : 𝜏si ⇒ Γ′ Applying Lemma E.15 to the typing derivation (from T-IndexCopy) for

𝑒 (which we know is a value from E-IndexCopy) gives us Σ; • ⊢ Γ ▷ Γ′.
Then, applying Lemma E.27 to Σ; • ⊢ Γ ▷ Γ′ and Σ ⊢ 𝜎 : Γ (from
premise) gives us Σ ⊢ 𝜎 : Γ′.
Applying Lemma E.4 to •; shrd; Γ′ ⊢𝑝 { ℓ } ⇒ , •; Γ′ ⊢shrd 𝑝 : 𝜏si, and
Σ ⊢ 𝜎 : Γ′ T-Slice (based on whether 𝜏xi = [𝜏si; 𝑛] or [𝜏si] respectively),
we get ∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; •; Γ′; Θ ⊢ 𝑣𝑖 : 𝜏si ⇒ Γ′ (after accounting
for the fact that the constituent expressions are values and the output
environment matches the input environment). Thus, we can pick out
specifically that Σ; •; Γ′; Θ ⊢ 𝑣𝑖 : 𝜏si ⇒ Γ′.

•; Γ′; Θ ⊢+ 𝜏si { 𝜏si ⊣ Γ′ Immediate by RR-Refl.
∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-Seq:
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From premise:

T-Seq
Σ; Δ; Γ; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1

Σ; Δ; gc-loansΘ (Γ1) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ; Θ ⊢ 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

Since 𝑒 = 𝑒1; 𝑒2, by inspection of the reduction rules, we know that 𝑒 steps with the following rule:

E-Seq

Σ ⊢ (𝜎 ; 𝑣; 𝑒 ) → (𝜎 ; 𝑒 )

We then pick Γ𝑖 to be gc-loansΘ (Γ1) , and need to show:

Σ ⊢ 𝜎 : gc-loansΘ (Γ1) Applying LemmaE.15 to the typing derivation (from T-Seq) for
𝑒1 (which we know is a value from E-Seq) gives us Σ; • ⊢ Γ▷Γ1.
Applying Lemma E.27 with this and Σ ⊢ 𝜎 : Γ (from premise)
gives us Σ ⊢ 𝜎 : Γ1. By definition of R-Env, we know that
Σ; • ⊢ Γ1 ▷ gc-loansΘ (Γ1). Then, we can apply Lemma E.27
to get Σ ⊢ 𝜎 : gc-loansΘ (Γ1).

Σ; gc-loansΘ (Γ1) ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-Seq) for
𝑒1 (which we know is a value from E-Seq) gives us Σ; • ⊢ Γ▷Γ1.
Then, we note that definitionally Σ; • ⊢ Γ1 ▷ gc-loansΘ (Γ1)
since we can only clear loans that are not present in any of the
types. Then, by transitivity, we have Σ; • ⊢ Γ▷gc-loansΘ (Γ1).
Thus, we can apply Lemma E.25 to each of the typing judg-
ments to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; gc-loansΘ (Γ1); 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢
𝑣𝑖 : 𝜏si

𝑖
⇒ gc-loansΘ (Γ1).

Finally, applyingWF-Temporaries gives us Σ; gc-loansΘ (Γ1) ⊢
𝑣 : Θ.

Σ; •; gc-loansΘ (Γ1) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 Immediate from the premise of T-Seq.
•; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si2 ⊣ Γ2 Immediate by RR-Refl.

∃Γ𝑜 .Γ2 ⋓ Γ𝑜 = Γ2 Γ𝑜 = Γ2

Case T-Branch:
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From premise:

T-Branch
Σ; Δ; Γ; Θ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2

Σ; Δ; Γ1; Θ ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 𝜏si = 𝜏si2 ∨ 𝜏si = 𝜏si3
Δ; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Δ; Γ3; Θ ⊢+ 𝜏si3 { 𝜏si ⊣ Γ′3 Γ′2 ⋓ Γ′3 = Γ′

Σ; Δ; Γ; Θ ⊢ if 𝑒1 { 𝑒2 } else { 𝑒3 } : 𝜏si ⇒ Γ′

Since 𝑒 = if 𝑒1 { 𝑒2 } else { 𝑒3 } , by inspection of the reduction rules, we know that 𝑒 steps with
the following rule:

E-IfTrue

Σ ⊢ (𝜎 ; if true { 𝑒1 } else { 𝑒2 } ) → (𝜎 ; 𝑒1 )

E-IfFalse

Σ ⊢ (𝜎 ; if false { 𝑒1 } else { 𝑒2 } ) → (𝜎 ; 𝑒2 )

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-IfTrue, we pick Γ𝑖 to be Γ1 , and need to show:

Σ ⊢ 𝜎 : Γ1 Applying Lemma E.15 to the typing derivation (from T-Branch) for 𝑒1
(which we know is a value from E-IfTrue) gives us Σ; • ⊢ Γ ▷ Γ1. Then,
applying Lemma E.27 with this and Σ ⊢ 𝜎 : Γ (from premise) gives us
Σ ⊢ 𝜎 : Γ1.

Σ; Γ1 ⊢ 𝑣 : Θ InvertingWF-Temporaries gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si
𝑖−1 ⊢

𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-Branch) for 𝑒1
(which we know is a value from E-IfTrue) gives us Σ; • ⊢ Γ ▷ Γ1.
Thus, we can apply Lemma E.25 to each of the typing judgments to get
∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ1; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ1.

Finally, applying WF-Temporaries gives us Σ; Γ1 ⊢ 𝑣 : Θ.
Σ; •; Γ1; Θ ⊢ 𝑒2 : 𝜏si ⇒ Γ2 Immediate from premise of T-Branch.
•; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Immediate from premise of T-Branch.

∃Γ𝑜 .Γ′2 ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′3

For E-IfFalse, we pick Γ𝑖 to be Γ1 , and need to show:

Σ ⊢ 𝜎 : Γ1 Applying Lemma E.15 to the typing derivation (from T-Branch) for 𝑒1
(which we know is a value from E-IfFalse) gives us Σ; • ⊢ Γ ▷ Γ1. Then,
applying Lemma E.27 with this and Σ ⊢ 𝜎 : Γ (from premise) gives us
Σ ⊢ 𝜎 : Γ1.

Σ; Γ1 ⊢ 𝑣 : Θ InvertingWF-Temporaries gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si
𝑖−1 ⊢

𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-Branch) for 𝑒1
(which we know is a value from E-IfFalse) gives us Σ; • ⊢ Γ ▷ Γ1.
Thus, we can apply Lemma E.25 to each of the typing judgments to get
∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ1; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ1.

Finally, applying WF-Temporaries gives us Σ; Γ1 ⊢ 𝑣 : Θ.
Σ; •; Γ1; Θ ⊢ 𝑒3 : 𝜏si3 ⇒ Γ3 Immediate from premise of T-Branch.
•; Γ3; Θ ⊢+ 𝜏si3 { 𝜏si ⊣ Γ′3 Immediate from premise of T-Branch.

∃Γ𝑜 .Γ′3 ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′2 (note that ⋓ commutes)
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Case T-Match:

From premise:

T-Match
Σ; Δ; Γ; Θ ⊢ 𝑒 : Either<𝜏si

𝑙
, 𝜏si𝑟 > ⇒ Γ′ ∀𝑟 ∈ free-regions(Either<𝜏si

𝑙
, 𝜏si𝑟 >) . Γ′ ⊢ 𝑟 rnrb

Σ; Δ; Γ′ , 𝑥1 : 𝜏si
𝑙
; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 , 𝑥1 : 𝜏sd

𝑙

Σ; Δ; Γ′ , 𝑥2 : 𝜏si𝑟 ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥2 : 𝜏sd𝑟 𝜏si = 𝜏si1 ∨ 𝜏si = 𝜏si2
Δ; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si ⊣ Γ′1 Δ; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Γ′1 ⋓ Γ′2 = Γ′

Σ; Δ; Γ; Θ ⊢ match 𝑒 { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } : 𝜏si ⇒ Γ′

Since 𝑒 = match 𝑒 { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } , by inspection of the reduction rules, we
know that 𝑒 steps with the following rule:

E-MatchLeft

Σ ⊢ (𝜎 ; match Left::<𝜏si1 , 𝜏si2 > (𝑣) { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } ) → (𝜎 , 𝑥1 ↦→ 𝑣; shift 𝑒1 )

E-MatchRight

Σ ⊢ (𝜎 ; match Right::<𝜏si1 , 𝜏si2 > (𝑣) { Left(𝑥1) ⇒ 𝑒1 , Right(𝑥2) ⇒ 𝑒2 } ) → (𝜎 , 𝑥2 ↦→ 𝑣; shift 𝑒2 )

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-MatchLeft, we pick Γ𝑖 to be Γ′ , 𝑥1 : 𝜏si

𝑙
, and need to show:

Σ ⊢ 𝜎 , 𝑥1 ↦→ 𝑣 : Γ′ , 𝑥1 : 𝜏si
𝑙

Applying Lemma E.15 to the typing derivation (from T-Match)
for 𝑒 (which we know is a value from E-MatchLeft) gives us
Σ; • ⊢ Γ▷Γ′. Then, applying Lemma E.27 with this and Σ ⊢ 𝜎 : Γ
(from premise) gives us Σ ⊢ 𝜎 : Γ′. Then, using Σ; •; Γ; Θ ⊢ 𝑣 :
𝜏si
𝑙
⇒ Γ′ (which we get by inversion of T-Inl in the derivation

for 𝑒) with WF-StackFrame allows us to finally conclude Σ ⊢
𝜎 , 𝑥1 ↦→ 𝑣 : Γ′ , 𝑥1 : 𝜏si

𝑙
.

Σ; Γ′ , 𝑥1 : 𝜏si
𝑙

⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-Match)
for 𝑒 (which we know is a value from E-MatchLeft) gives us
Σ; • ⊢ Γ ▷ Γ′.
Thus, we can apply Lemma E.25 to each of the typing judgments
to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′.

Applying Lemma E.34 to each of the value typing judgments
and ∀𝑟 ∈ free-regions(Either<𝜏si

𝑙
, 𝜏si𝑟 >). Γ′ ⊢ 𝑟 rnrb (from

the premise of T-Match) gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′ , 𝑥1 :
𝜏si
𝑙
; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′ , 𝑥1 : 𝜏si

𝑙
.

Finally, applying WF-Temporaries gives us Σ; Γ′ , 𝑥1 : 𝜏si
𝑙
⊢ 𝑣 :

Θ.
Σ; •; Γ′ , 𝑥1 : 𝜏si

𝑙
; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Immediate from applying T-Shift to Σ; •; Γ′ , 𝑥1 : 𝜏si

𝑙
; Θ ⊢

𝑒1 : 𝜏si1 ⇒ Γ1 , 𝑥1 : 𝜏sd
𝑙

from the premise of T-Match.
•; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si ⊣ Γ′1 Immediate from premise of T-Match.

∃Γ𝑜 .Γ′1 ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′2
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For E-MatchRight, we pick Γ𝑖 to be Γ′ , 𝑥2 : 𝜏si𝑟 , and need to show:

Σ ⊢ 𝜎 , 𝑥2 ↦→ 𝑣 : Γ′ , 𝑥2 : 𝜏si𝑟 Applying Lemma E.15 to the typing derivation (from T-Match)
for 𝑒 (which we know is a value from E-MatchRight) gives
us Σ; • ⊢ Γ ▷ Γ′. Then, applying Lemma E.27 with this and
Σ ⊢ 𝜎 : Γ (from premise) gives us Σ ⊢ 𝜎 : Γ′. Then, using
Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏si𝑟 ⇒ Γ′ (which we get by inversion of T-Inr
in the derivation for 𝑒) withWF-StackFrame allows us to finally
conclude Σ ⊢ 𝜎 , 𝑥2 ↦→ 𝑣 : Γ′ , 𝑥2 : 𝜏si𝑟 .

Σ; Γ′ , 𝑥2 : 𝜏si𝑟 ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-Match)
for 𝑒 (which we know is a value from E-MatchLeft) gives us
Σ; • ⊢ Γ ▷ Γ′.
Thus, we can apply Lemma E.25 to each of the typing judgments
to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′.

Applying Lemma E.34 to each of the value typing judgments
and ∀𝑟 ∈ free-regions(Either<𝜏si

𝑙
, 𝜏si𝑟 >). Γ′ ⊢ 𝑟 rnrb (from

the premise of T-Match) gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′ , 𝑥2 :
𝜏si𝑟 ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′ , 𝑥2 : 𝜏si𝑟 .

Finally, applying WF-Temporaries gives us Σ; Γ′ , 𝑥2 : 𝜏si𝑟 ⊢ 𝑣 :
Θ.

Σ; •; Γ′ , 𝑥2 : 𝜏si𝑟 ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 Immediate from applying T-Shift to Σ; •; Γ′ , 𝑥2 : 𝜏si𝑟 ; Θ ⊢
𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥2 : 𝜏sd𝑟 from the premise of T-Match.

•; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si ⊣ Γ′2 Immediate from premise of T-Match.
∃Γ𝑜 .Γ′2 ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′1 (note that ⋓ commutes)

Case T-Assign:

From premise:

T-Assign
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ1 Γ1 (𝜋 ) = 𝜏sx 𝜏sx = &𝑟 𝜔 𝜏xi =⇒ 𝑟 is unique to 𝜋 in Γ1

Δ; Γ1 ▷− ∗𝜋 ; Θ ⊢= 𝜏si { 𝜏sx ⊣ Γ′ (𝜏sx = 𝜏sd ∨ Δ; Γ′; Θ ⊢uniq 𝜋 ⇒ { uniq𝜋 })
Σ; Δ; Γ; Θ ⊢ 𝜋 ≔ 𝑒 : unit ⇒ Γ′ [𝜋 ↦→ 𝜏si ]

Since 𝑒 = 𝜋 ≔ 𝑒𝑎 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Assign
𝜎 ⊢ 𝑝 ⇓ R ↦→ V[_] R = R□ [𝑥 ]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣 ) → (𝜎 [𝑥 ↦→ V [𝑣 ] ]; ( ) )

We then pick Γ𝑖 to be gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si]) , and need to show:
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Σ ⊢ 𝜎 [𝜋 ↦→ V [𝑣 ] ] : gc-loansΘ (Γ′ [𝜋 ↦→ 𝜏si ]) From our premise, we have Σ ⊢ 𝜎 : Γ. Then, applying
Lemma E.15 to the typing derivation Σ; •; Γ; Θ ⊢ 𝑣 :
𝜏si ⇒ Γ1 (from the premise of T-Assign combined with
the fact that 𝑒 is a value from E-Assign) gives us Σ; • ⊢
Γ ▷ Γ1. Then, applying Lemma E.27 to these two facts
gives us Σ ⊢ 𝜎 : Γ1.
Finally, we apply Lemma E.41 to Σ ⊢ 𝜎 : Γ1 and Γ1 (𝜋) =
𝜏sx (from premise) and •; Γ1 ▷− 𝜋 ; Θ ⊢= 𝜏si { 𝜏sx ⊣
Γ′ (from the premise of T-Assign) and •; uniq; Γ′ ⊢𝜋
{ uniq𝜋 } ⇒ (from premise of T-Assign and 𝜎 ⊢ 𝜋 ⇓
𝜋 ↦→ V[_] and 𝜋 = 𝑥 .𝑞 (both from the premise of E-
Assign), Σ; •; Γ1 ▷− 𝑝 ; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ1 ▷− 𝑝 (from above)
and Σ ⊢ 𝜎 [𝑥 ↦→ V[𝑣]] : gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si]).

Σ; gc-loansΘ (Γ′ [𝜋 ↦→ 𝜏si ]) ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from
T-Let) for 𝑒1 (which we know is a value from E-
Let) gives us Σ; • ⊢ Γ ▷ Γ1. Then, we can apply
Lemma E.25 to each of the typing judgments to get
∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ1; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ1.

Then, we apply Lemma E.40 to each of these typing
judgments to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; gc-loansΘ (Γ′[𝜋 ↦→
𝜏si]); 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖

⇒ gc-loansΘ (Γ′[𝜋 ↦→
𝜏si]). After which we can apply WF-Temporaries to con-
clude Σ; gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si]) ⊢ 𝑣 : Θ.

Σ; •; Γ𝑖 ; Θ ⊢ ( ) : unit ⇒ Γ𝑖 Immediate by T-Unit.
•; Γ𝑖 ; Θ ⊢+ unit { unit ⊣ Γ𝑖 Immediate by RR-Refl.

∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖 = gc-loansΘ (Γ′[𝜋 ↦→ 𝜏si])

Case T-AssignDeref:

From premise:

T-AssignDeref
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si𝑛 ⇒ Γ1 Δ; Γ1 ⊢uniq 𝑝 : 𝜏si𝑜

Δ; Γ1; Θ ⊢+ 𝜏si𝑛 { 𝜏si𝑜 ⊣ Γ′ Δ; Γ′; Θ ⊢uniq 𝑝 ⇒ { ℓ }
Σ; Δ; Γ; Θ ⊢ 𝑝 ≔ 𝑒 : unit ⇒ Γ′

Since 𝑒 = 𝑝 ≔ 𝑒𝑎 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Assign
𝜎 ⊢ 𝑝 ⇓ R ↦→ V[_] R = R□ [𝑥 ]

Σ ⊢ (𝜎 ; 𝑝 ≔ 𝑣 ) → (𝜎 [𝑥 ↦→ V [𝑣 ] ]; ( ) )

We then pick Γ𝑖 to be Γ′ , and need to show:
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Σ ⊢ 𝜎 [𝜋 ↦→ V [𝑣 ] ] : Γ′ From our premise, we have Σ ⊢ 𝜎 : Γ. Then, applying Lemma E.15 to
the typing derivation Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ1 (from the premise of
T-AssignDeref combined with the fact that 𝑒 is a value from E-Assign)
gives us Σ; • ⊢ Γ ▷ Γ1. Then, applying Lemma E.27 to these two facts
gives us Σ ⊢ 𝜎 : Γ1.
Then, applying Lemma E.14 to Σ ⊢ 𝜎 : Γ1 and •; Γ1; Θ ⊢+ 𝜏si𝑛 { 𝜏si𝑜 ⊣
Γ′ (from the premise of T-AssignDeref) gives us Σ ⊢ 𝜎 : Γ′.

Σ; Γ′ ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-AssignDeref)
for 𝑒 (which we know is a value from E-Assign) gives us Σ; • ⊢ Γ ▷ Γ1.
Then, we can apply Lemma E.25 to each of the typing judgments to
get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ1; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ1.

Then, applying Lemma E.13 to each of these derivations along with
•; Γ1; Θ ⊢+ 𝜏si𝑛 { 𝜏si𝑜 ⊣ Γ′ (from the premise of T-AssignDeref) gives
us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′. We can then

apply WF-Temporaries to conclude Σ; Γ′ ⊢ 𝑣 : Θ.
Σ; •; Γ′; Θ ⊢ ( ) : unit ⇒ Γ′ Immediate by T-Unit.
•; Γ′; Θ ⊢+ unit { unit ⊣ Γ′ Immediate by RR-Refl.

∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-Let:

From premise:

T-Let
Σ; Δ; Γ; Θ ⊢ 𝑒1 : 𝜏si1 ⇒ Γ1 Δ; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si𝑎 ⊣ Γ′1

∀𝑟 ∈ free-regions(𝜏si𝑎 ) . Γ′1 ⊢ 𝑟 rnrb Σ; Δ; gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ) ; Θ ⊢ 𝑒2 : 𝜏si2 ⇒ Γ2 , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ let 𝑥 : 𝜏si𝑎 = 𝑒1; 𝑒2 : 𝜏si2 ⇒ Γ2

Since 𝑒 = let 𝑥 : 𝜏si = 𝑒1; 𝑒2, by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-Let

Σ ⊢ (𝜎 ; let 𝑥 : 𝜏si𝑎 = 𝑣; 𝑒 ) → (𝜎 , 𝑥 ↦→ 𝑣; shift 𝑒 )

We then pick Γ𝑖 to be gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ) , and need to show:
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Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 : gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ) Applying Lemma E.15 to the typing derivation
(from T-Let) for 𝑒1 (which we know is a value
from E-Let) gives us Σ; • ⊢ Γ ▷ Γ1. Then, we
can apply Lemma E.27 to get Σ ⊢ 𝜎 : Γ1. Then,
applying Lemma E.14 to •; Γ1; Θ ⊢+ 𝜏si1 { 𝜏si𝑎 ⊣
Γ′1 (from premise of T-Let) gives us Σ ⊢ 𝜎 : Γ′1 . We
can also apply Lemma E.42 to Σ; •; Γ; Θ ⊢ 𝑣 :
𝜏si1 ⇒ Γ1 (from premise of T-Let) and •; Γ1; Θ ⊢+
𝜏si1 { 𝜏si𝑎 ⊣ Γ′1 (from premise of T-Let) gives us
Σ; •; Γ′; Θ ⊢ 𝑒1 : 𝜏si𝑎 ⇒ Γ′

Then, apply Lemma E.35 to Σ ⊢ 𝜎 : Γ′1 and
Σ; •; Γ′; Θ ⊢ 𝑒1 : 𝜏si𝑎 ⇒ Γ′ gives us Σ ⊢ 𝜎 , 𝑥 ↦→
𝑣 : Γ′1 , 𝑥 : 𝜏si𝑎 . By definition of R-Env, we know
that Σ; • ⊢ Γ′1 , 𝑥 : 𝜏si𝑎 ▷ gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ).
Then, we can apply Lemma E.27 to conclude
Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 : gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ).

Σ; gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ) ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation
(from T-Let) for 𝑒1 (whichwe know is a value from
E-Let) gives us Σ; • ⊢ Γ ▷ Γ1. Then, we can apply
Lemma E.25 to each of the typing judgments to
get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ1; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 :
𝜏si
𝑖
⇒ Γ1.

Applying Lemma E.34 to each of the value typ-
ing judgments and ∀𝑟 ∈ free-regions(𝜏si𝑎 ). Γ′1 ⊢
𝑟 rnrb (from the premise of T-Let) gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ1 , 𝑥 : 𝜏si𝑎 ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 :
𝜏si
𝑖
⇒ Γ1 , 𝑥 : 𝜏si𝑎 .

Then, we note that definitionally Σ; • ⊢ Γ1 , 𝑥 :
𝜏si𝑎 ▷ gc-loansΘ (Γ1 , 𝑥 : 𝜏si𝑎 ) since we can only
clear loans that are not present in any of the
types. We can use this with each typing deriva-
tion in Lemma E.15, and then finally apply WF-
Temporaries to get Σ; gc-loansΘ (Γ1 , 𝑥 : 𝜏si𝑎 ) ⊢
𝑣 : Θ.

Σ; •; gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ) ; Θ ⊢ shift 𝑒 : 𝜏si2 ⇒ Γ2 Immediate by applying T-Shift to the derivation
Σ; •; gc-loansΘ (Γ′1 , 𝑥 : 𝜏si𝑎 ); Θ ⊢ 𝑒 : 𝜏si2 ⇒
Γ2 , 𝑥 : 𝜏sd (from premise of T-Let).

•; Γ2; Θ ⊢+ 𝜏si2 { 𝜏si2 ⊣ Γ2 Immediate by RR-Refl.
∃Γ𝑜 .Γ2 ⋓ Γ𝑜 = Γ2 Γ𝑜 = Γ2

Case T-LetRegion:
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From premise:

T-LetRegion
Σ; Δ; Γ , 𝑟 ↦→ {}; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ }

Σ; Δ; Γ; Θ ⊢ letrgn <𝑟> { 𝑒 } : 𝜏si ⇒ Γ′

Since 𝑒 = letrgn <𝑟> { 𝑒 } , by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-LetRegion

Σ ⊢ (𝜎 ; letrgn <𝑟> { 𝑣 } ) → (𝜎 ; 𝑣 )

We then pick Γ𝑖 to be Γ′ , and need to show:

Σ ⊢ 𝜎 : Γ′ Applying Lemma E.15 to the typing derivation (from T-LetRegion) for
𝑒 (which we know is a value from E-LetRegion) gives us Σ; • ⊢ Γ ▷ Γ′.
Then, applying Lemma E.27 with this and Σ ⊢ 𝜎 : Γ (from premise) gives
us Σ ⊢ 𝜎 : Γ′.

Σ; Γ′ ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si
𝑖−1 ⊢

𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-LetRegion) for 𝑒
(which we know is a value from E-LetRegion) gives us Σ; • ⊢ Γ ▷ Γ′.
Thus, we can apply Lemma E.25 to each of the typing judgments to get
∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′.

Finally, applying WF-Temporaries gives us Σ; Γ′ ⊢ 𝑣 : Θ.
Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′ We know from E-LetRegion that 𝑒 is a value 𝑣 . Thus, we can apply

Lemma E.26 to Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ {ℓ } to get Σ; •; Γ′ , 𝑟 ↦→
{ ℓ }; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′ , 𝑟 ↦→ { ℓ }.
We now wish to show that Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′. By inspecting
the grammar of values and their typing rules, we know that the only
values who depend on the context are pointers and closure values. But
by inversion on Σ; •; Γ; Θ ⊢ letrgn <𝑟> { 𝑣 } : 𝜏si ⇒ Γ′, we know
that Σ; •; Γ′ ⊢ 𝜏si. Since the type is valid without the frame, we know
that the values cannot depend on that frame. Thus, we can conclude
Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′.

•; Γ′; Θ ⊢+ 𝜏si { 𝜏si ⊣ Γ′ Immediate by RR-Refl.
∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-While:
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From premise:

T-While
Σ; Δ; Γ; Θ ⊢ 𝑒1 : bool ⇒ Γ1 Σ; Δ; Γ1; Θ ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ2; Θ ⊢ 𝑒1 : bool ⇒ Γ2 Σ; Δ; Γ2; Θ ⊢ 𝑒2 : unit ⇒ Γ2

Σ; Δ; Γ; Θ ⊢ while 𝑒1 { 𝑒2 } : unit ⇒ Γ2

Since 𝑒 = while 𝑒1 { 𝑒2 } , by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-While

Σ ⊢ (𝜎 ; while 𝑒1 { 𝑒2 } ) → (𝜎 ; if 𝑒1 { 𝑒2; while 𝑒1 { 𝑒2 } } else { ( ) } )

We then pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; Γ ⊢ 𝑣 : Θ Immediate from our premise.

Σ; •; Γ; Θ ⊢ 𝑒′ : unit ⇒ Γ2 We would like to build a derivation to show that the expression
if 𝑒1 { 𝑒2; while 𝑒1 { 𝑒2 } } else { ( ) } is well-typed. We thus start
by applying T-Branch.
This requires us to show three things. First, Σ; •; Γ; Θ ⊢ 𝑒1 :
bool ⇒ Γ1 which we have from the premise of T-While. Sec-
ond, Σ; •; Γ1; Θ ⊢ 𝑒2; while 𝑒1 { 𝑒2 } : unit ⇒ Γ2. We build
this by applying T-Seq to Σ; •; Γ1; Θ ⊢ 𝑒2 : unit ⇒ Γ2 and

Σ; •; Γ2; Θ ⊢ while 𝑒1 { 𝑒2 } : Γ2 ⇒ . The former is directly in the
premise of T-While and the latter can be built by applying T-While
to Σ; •; Γ2; Θ ⊢ 𝑒1 : bool ⇒ Γ2 and Σ; •; Γ2; Θ ⊢ 𝑒2 : unit ⇒ Γ2,
both from the premise of our original T-While. Finally, we need to
show Σ; •; Γ2; Θ ⊢ ( ) : unit ⇒ Γ2, which is immediate from T-
Unit.

•; Γ2; Θ ⊢+ unit { unit ⊣ Γ2 Immediate by RR-Refl.
∃Γ𝑜 .Γ2 ⋓ Γ𝑜 = Γ2 Γ𝑜 = Γ2

Case T-ForArray:



Oxide: The Essence of Rust 1:111

From premise:

T-ForArray
Σ; Δ; Γ; Θ ⊢ 𝑒1 : [𝜏si; 𝑛] ⇒ Γ1 ∀𝑟 ∈ free-regions(𝜏si) . Γ1 ⊢ 𝑟 rnrb

Σ; Δ; Γ1 , 𝑥 : 𝜏si; Θ ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ1

Since 𝑒 = for 𝑥 in 𝑒1 { 𝑒2 } , by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-ForArray

Σ ⊢ (𝜎 ; for 𝑥 in [𝑣0 , . . . , 𝑣𝑛 ] { 𝑒 } ) → (𝜎 , 𝑥 ↦→ 𝑣0; shift 𝑒 ; for 𝑥 in [𝑣1 , . . . , 𝑣𝑛 ] { 𝑒 } )

E-ForEmptyArray

Σ ⊢ (𝜎 ; for 𝑥 in [] { 𝑒 } ) → (𝜎 ; ( ) )

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-ForArray, we pick Γ𝑖 to be Γ1 , 𝑥 : 𝜏si , and need to show:
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Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣0 : Γ1 , 𝑥 : 𝜏si Applying Lemma E.15 to the typing derivation (from T-
ForArray) for 𝑒1 (which we know is a value from E-ForArray)
gives us Σ; • ⊢ Γ ▷ Γ1. Then, we can apply Lemma E.27
to get Σ ⊢ 𝜎 : Γ1. Applying Lemma E.26 to the deriva-
tion Σ; •; Γ; Θ ⊢ [𝑣0 , . . . , 𝑣𝑛] : [𝜏si; 𝑛] ⇒ Γ1 gives us

Σ; •; Γ1; Θ ⊢ [𝑣0 , . . . , 𝑣𝑛] : [𝜏si; 𝑛] ⇒ Γ1. Then, using in-
version (of T-Array), we get Σ; •; Γ1; Θ ⊢ 𝑣0 : 𝜏si ⇒ Γ1.
Finally, applying Lemma E.35 to Σ ⊢ 𝜎 : Γ1 and Σ; •; Γ1; Θ ⊢
𝑣0 : 𝜏si ⇒ Γ1 gives us Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣0 : Γ1 , 𝑥 : 𝜏si.

Σ; Γ1 , 𝑥 : 𝜏si ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-
ForArray) for 𝑒1 (which we know is a value from E-ForArray)
gives us Σ; • ⊢ Γ ▷ Γ1.
Thus, we can apply Lemma E.25 to each of the typing judg-
ments to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ1; • ⊢ 𝑣𝑖 : 𝜏si

𝑖
⇒ Γ1.

Applying Lemma E.34 to each of the value typing judgments
and ∀𝑟 ∈ free-regions(𝜏si). Γ1 ⊢ 𝑟 rnrb (from the premise of
T-ForArray) gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ1 , 𝑥 : 𝜏si; • ⊢ 𝑣𝑖 :
𝜏si
𝑖
⇒ Γ1 , 𝑥 : 𝜏si.

Σ; •; Γ1 , 𝑥 : 𝜏si; Θ ⊢ 𝑒′ : unit ⇒ Γ1 We need to build a derivation for the expression
shift 𝑒; for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 } . The bottom of
this derivation will be T-Seq which requires us to show
that Σ; •; Γ1 , 𝑥 : 𝜏si; Θ ⊢ shift 𝑒 : unit ⇒ Γ1 and that
Σ; •; Γ1; Θ ⊢ for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 } : unit ⇒ Γ1.

To show Σ; •; Γ1 , 𝑥 : 𝜏si; Θ ⊢ shift 𝑒 : unit ⇒ Γ1, we
apply T-Shift to Σ; •; Γ1 , 𝑥 : 𝜏si; Θ ⊢ 𝑒 : unit ⇒ Γ1 , 𝑥 : 𝜏sd
(from the premise of T-ForArray).
To show Σ; •; Γ1; Θ ⊢ for 𝑥 in [𝑣1 , . . . , 𝑣𝑛] { 𝑒 } :
unit ⇒ Γ1, we apply Lemma E.26 to the derivation
Σ; •; Γ; Θ ⊢ [𝑣0 , . . . , 𝑣𝑛] : [𝜏si; 𝑛] ⇒ Γ1 to get Σ; •; Γ1; Θ ⊢
[𝑣0 , . . . , 𝑣𝑛] : [𝜏si; 𝑛] ⇒ Γ1. Then, we rewrite the deriva-
tion (inverting and then reapply T-Array) to exclude 𝑣0 giving
us Σ; •; Γ1; Θ ⊢ [𝑣1 , . . . , 𝑣𝑛] : [𝜏si; 𝑛 − 1] ⇒ Γ1. Finally, we
apply T-ForArray using this combined with Σ; •; Γ1; Θ ⊢ 𝑒 :
unit ⇒ Γ1 (from the premise of T-ForArray).

•; Γ1; Θ ⊢+ unit { unit ⊣ Γ1 Immediate by RR-Refl.
∃Γ𝑜 .Γ1 ⋓ Γ𝑜 = Γ1 Γ𝑜 = Γ1

For E-ForEmptyArray, we pick Γ𝑖 to be Γ , and need to show:
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Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; Γ ⊢ 𝑣 : Θ Immediate from our premise.

Σ; •; Γ; Θ ⊢ ( ) : unit ⇒ Γ Immediate by T-Unit.
•; Γ; Θ ⊢+ unit { unit ⊣ Γ Immediate by RR-Refl.

∃Γ𝑜 .Γ ⋓ Γ𝑜 = Γ Γ𝑜 = Γ

Case T-ForSlice:

From premise:

T-ForSlice
Σ; Δ; Γ; Θ ⊢ 𝑒1 : &𝜌 𝜔 [𝜏si ] ⇒ Γ1 ∀𝑟 ∈ free-regions(&𝜌 𝜔 𝜏si) . Γ1 ⊢ 𝑟 rnrb

Σ; Δ; Γ1 , 𝑥 : &𝜌 𝜔 𝜏si; Θ ⊢ 𝑒2 : unit ⇒ Γ1 , 𝑥 : 𝜏sx1

Σ; Δ; Γ; Θ ⊢ for 𝑥 in 𝑒1 { 𝑒2 } : unit ⇒ Γ2

Since 𝑒 = for 𝑥 in 𝑒1 { 𝑒2 } , by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-ForSlice
𝜎 ⊢ R ⇓ _ ↦→ _[ [𝑣1 , . . . , 𝑣𝑖 , . . . , 𝑣𝑗 , . . . , 𝑣𝑛 ] ] 𝑖 < 𝑗 𝑖′ = 𝑖 + 1

Σ ⊢ (𝜎 ; for 𝑥 in ptr R[𝑖 .. 𝑗 ] { 𝑒 } ) → (𝜎 , 𝑥 ↦→ ptr R[𝑖 ]; shift 𝑒 ; for 𝑥 in ptr R[𝑖′.. 𝑗 ] { 𝑒 } )

E-ForEmptySlice

Σ ⊢ (𝜎 ; for 𝑥 in ptr 𝜋 [𝑛..𝑛] { 𝑒 } ) → (𝜎 ; ( ) )

Then, for each possible rule, we’ll pick Γ𝑖 separately. The cases proceed as follows:
For E-ForSlice, we pick Γ𝑖 to be Γ1 , 𝑥 : &𝑟 𝜔 𝜏si , and need to show:
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Σ ⊢ 𝜎 , 𝑥 ↦→ ptr R[𝑛1 ] : Γ1 , 𝑥 : &𝑟 𝜔 𝜏si Applying Lemma E.15 to the typing derivation (from
T-ForSlice) for 𝑒1 (which we know is a value from E-
ForSlice) gives us Σ; • ⊢ Γ ▷ Γ1. Then, we can apply
Lemma E.27 to get Σ ⊢ 𝜎 : Γ1. Applying Lemma E.26 to the
derivation Σ; •; Γ; Θ ⊢ ptr R[𝑖 .. 𝑗] : &𝑟 𝜔 [𝜏si] ⇒ Γ1

gives us Σ; •; Γ1; Θ ⊢ ptr R[𝑖 .. 𝑗] : &𝑟 𝜔 [𝜏si] ⇒ Γ1.
Then, using inversion (on T-Pointer), we get Σ; Γ1 ⊢
R[𝑖 .. 𝑗] : 𝜏xi (where 𝜏xi = [𝜏si; 𝑛] or [𝜏si]) and 𝜔𝜋 ∈ Γ1 (𝑟 )
(where R = R□ [𝜋]). We can invert WF-RefSliceArray or
WF-RefSliceSlice (based on 𝜏xi) for Σ; Γ1 ⊢ R[𝑖 .. 𝑗] : 𝜏xi
and then apply WF-RefIndexArray or WF-RefIndexSlice
appropriately to get Σ; Γ1 ⊢ R[𝑖] : 𝜏xi. We can then use T-
Pointer to get Σ; •; Γ1; Θ ⊢ ptr R[𝑛1] : &𝑟 𝜔 𝜏si ⇒
Γ1. Finally, applying Lemma E.35 to Σ ⊢ 𝜎 : Γ1 and
Σ; •; Γ1; Θ ⊢ ptr R[𝑛1] : &𝑟 𝜔 𝜏si ⇒ Γ1 gives us
Σ ⊢ 𝜎 , 𝑥 ↦→ ptr R[𝑛1] : Γ1 , 𝑥 : &𝑟 𝜔 𝜏si.

Σ; Γ1 , 𝑥 : &𝑟 𝜔 𝜏si ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from
T-ForSlice) for 𝑒1 (which we know is a value from E-
ForSlice) gives us Σ; • ⊢ Γ ▷ Γ1.
Thus, we can apply Lemma E.25 to each of the typing
judgments to get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ1; • ⊢ 𝑣𝑖 : 𝜏si

𝑖
⇒ Γ1.

Applying Lemma E.34 to each of the value typing
judgments and ∀𝑟 ∈ free-regions(&𝜌 𝜔 𝜏si) . Γ1 ⊢
𝑟 rnrb (from the premise of T-ForSlice) gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ1 , 𝑥 : &𝑟 𝜔 𝜏si; • ⊢ 𝑣𝑖 : 𝜏si

𝑖
⇒ Γ1 , 𝑥 :

&𝑟 𝜔 𝜏si.
Σ; •; Γ1 , 𝑥 : &𝑟 𝜔 𝜏si; Θ ⊢ 𝑒′ : unit ⇒ Γ1 We need to build a derivation for the expression

shift 𝑒; for 𝑥 in ptr R[𝑛′
1..𝑛2] { 𝑒 } . The bottom of

this derivation will be T-Seq which requires us to show
that Σ; •; Γ1 , 𝑥 : 𝜏si; Θ ⊢ shift 𝑒 : unit ⇒ Γ1 and that
Σ; •; Γ1; Θ ⊢ for 𝑥 in ptr R[𝑛′

1..𝑛2] { 𝑒 } : unit ⇒
Γ1.
To show Σ; •; Γ1 , 𝑥 : 𝜏si; Θ ⊢ shift 𝑒 : unit ⇒ Γ1,
we apply T-Shift to Σ; •; Γ1 , 𝑥 : 𝜏si; Θ ⊢ 𝑒 : unit ⇒
Γ1 , 𝑥 : 𝜏sd (from the premise of T-ForSlice).
To show Σ; •; Γ1; Θ ⊢ for 𝑥 in ptr R[𝑛′

1..𝑛2] { 𝑒 } :
unit ⇒ Γ1, we apply Lemma E.26 to the derivation
Σ; •; Γ; Θ ⊢ ptr R[𝑛1..𝑛2] : &𝑟 𝜔 [𝜏si] ⇒ Γ1 to get

Σ; •; Γ1; Θ ⊢ ptr R[𝑛1..𝑛2] : &𝑟 𝜔 [𝜏si] ⇒ Γ1. Then,
we rewrite the derivation (inverting and then reapply T-
Pointer) to increment 𝑛1 to 𝑛′

1 giving us Σ; •; Γ1; Θ ⊢
ptr R[𝑛′

1 ..𝑛2] : &𝑟 𝜔 [𝜏si] ⇒ Γ1. Finally, we apply
T-ForSlice using this combined with Σ; •; Γ1; Θ ⊢ 𝑒 :
unit ⇒ Γ1 (from the premise of T-ForSlice).

•; Γ1; Θ ⊢+ unit { unit ⊣ Γ1 Immediate by RR-Refl.
∃Γ𝑜 .Γ1 ⋓ Γ𝑜 = Γ1 Γ𝑜 = Γ1
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For E-ForEmptySlice, we pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; Γ ⊢ 𝑣 : Θ Immediate from our premise.

Σ; •; Γ; Θ ⊢ ( ) : unit ⇒ Γ Immediate by T-Unit.
•; Γ; Θ ⊢+ unit { unit ⊣ Γ Immediate by RR-Refl.

∃Γ𝑜 .Γ ⋓ Γ𝑜 = Γ Γ𝑜 = Γ

Case T-AppFunction:

From premise:

T-AppFunction
Σ; Δ; Γ ⊢ Φ Δ; Γ ⊢ 𝜌 Σ; Δ; Γ ⊢ 𝜏si 𝛿 = · [Φ/𝜑 ] [𝜌/𝜚 ] [𝜏si/𝛼 ]
Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) → 𝜏si

𝑓
where 𝜚1 : 𝜚2 ⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝛿 (𝜏si1 ) . . . 𝛿 (𝜏si𝑖−1) ⊢ 𝑒𝑖 : 𝛿 (𝜏si𝑖 ) ⇒ Γ𝑖

∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ′𝑛 ⊢ 𝑟 rnrb Δ; Γ𝑛 ; Θ ⊢ 𝜚2 [𝜌/𝜚 ] :> 𝜚1 [𝜌/𝜚 ] ⊣ Γ𝑏

Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 ::<Φ , 𝜌 , 𝜏si> (𝑒1 , . . . , 𝑒𝑛) : 𝛿 (𝜏si
𝑓
) ⇒ Γ𝑏

Since 𝑒 = 𝑒𝑓 ::<Φ , 𝜌 ′ , 𝜏si>(𝑒1 , . . . , 𝑒𝑛), by inspection of the reduction rules, we know that 𝑒 steps
with the following rule:

E-AppFunction
Σ(𝑓 ) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛) → 𝜏s𝑟 where 𝜚 : 𝜚 ′ { 𝑒 }

Σ ⊢ (𝜎 ; 𝑓 ::<Φ , 𝑟 ′ , 𝜏s> (𝑣1 , . . . , 𝑣𝑛) ) → (𝜎 ♮ 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 [Φ/𝜑 ] [𝑟 ′/𝜚 ] [𝜏
s/𝛼 ] )

We then pick Γ𝑖 to be Γ𝑏 ♮ 𝑥1 : 𝛿 (𝜏si1 ) , . . . , 𝑥𝑛 : 𝛿 (𝜏si𝑛 ) , and need to show:



1:116 Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed

Σ ⊢ 𝜎′ : Γ𝑖 Applying Lemma E.15 to the derivation for 𝑣 𝑓 gives us Σ; • ⊢ Γ ▷ Γ0.
Then, applying Lemma E.15 to the derivations for every 𝑣𝑖 gives us
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; • ⊢ Γ𝑖−1 ▷ Γ𝑖 .
Inversion on •; Γ𝑛 ; Θ ⊢ 𝜚2 [𝜌/𝜚 ] :> 𝜚1 [𝜌/𝜚 ] ⊣ Γ𝑏 gives us a se-
quence of outlives relations with intermediate contexts. Applying
Lemma E.21 to each of them and then combining the result by tran-
sitivity gives us Σ; • ⊢ Γ𝑛 ▷ Γ𝑏 . Combining both by transitivity, we
have Σ; • ⊢ Γ ▷ Γ𝑏 .
We can then apply Lemma E.27 with Σ ⊢ 𝜎 : Γ to get Σ ⊢ 𝜎 : Γ𝑏 .
We can apply WF-StackFrame to get Σ ⊢ 𝜎 ♮ • : Γ𝑏 ♮ •. Then, we
repeatedly apply Lemma E.35 to the derivations for the arguments
(𝑣1 . . . 𝑣𝑛) to get Σ ⊢ 𝜎 ♮ 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 : Γ ♮ 𝑥1 :
𝛿 (𝜏si1 ) , . . . , 𝑥𝑛 : 𝛿 (𝜏si𝑛 ).

Σ; Γ𝑖 ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the derivation for 𝑣 𝑓 gives us Σ; • ⊢ Γ ▷ Γ0.
Then, applying Lemma E.15 to the derivations for every 𝑣𝑖 gives us
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; • ⊢ Γ𝑖−1 ▷ Γ𝑖 .
Inversion on •; Γ𝑛 ; Θ ⊢ 𝜚2 [𝜌/𝜚 ] :> 𝜚1 [𝜌/𝜚 ] ⊣ Γ𝑏 gives us a se-
quence of outlives relations with intermediate contexts. Applying
Lemma E.21 to each of them and then combining the result by tran-
sitivity gives us Σ; • ⊢ Γ𝑛 ▷ Γ𝑏 . Combining both by transitivity, we
have Σ; • ⊢ Γ ▷ Γ𝑏 .
Thus, we can apply Lemma E.25 to each of the typing judgments to
get ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ𝑏 ; • ⊢ 𝑣𝑖 : 𝜏si

𝑖
⇒ Γ𝑏 .

We also immediately have that adding a new empty frame leaves all
the typing derivations good since it doesn’t actually bind any new
names on its own. Thus, we have ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ𝑏 ♮ •; • ⊢ 𝑣𝑖 :
𝜏si
𝑖
⇒ Γ𝑏 ♮ •.

Repeatedly applying Lemma E.34 to each of the value typing judg-
ments gives us∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ𝑏 ♮ 𝑥1 : 𝛿 (𝜏si1 ) , . . . , 𝑥𝑛 : 𝛿 (𝜏si𝑛 ); • ⊢
𝑣𝑖 : 𝜏si

𝑖
⇒ Γ𝑏 ♮ 𝑥1 : 𝛿 (𝜏si1 ) , . . . , 𝑥𝑛 : 𝛿 (𝜏si𝑛 ).

Σ; •; Γ𝑖 ; Θ ⊢ 𝑒′ : 𝛿 (𝜏si
𝑓
) ⇒ Γ𝑏 Applying Lemma E.43 with ⊢ Σ; •; Γ𝑏 ; Θ and Σ(𝑓 ) =

fn 𝑓 <𝜑 , 𝜚 , 𝛼>(𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }
(from the premise of on E-AppFunction) gives us
Σ; 𝜑 : FRM , 𝜚 : RGN , 𝜚1 :> 𝜚2 , 𝛼 :★; Γ𝑏 ♮ 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 :
𝜏si𝑛 ; Θ ⊢ framed 𝑒 : 𝜏si

𝑓
⇒ Γ𝑏 .

We then repeatedly apply Lemma E.2 for all of our type, region,
and environment variables to get Σ; •; Γ𝑏 ♮ 𝑥1 : 𝛿 (𝜏si1 ) , . . . , 𝑥𝑛 :
𝛿 (𝜏si𝑛 ); Θ ⊢ framed 𝑒 : 𝛿 (𝜏si

𝑓
) ⇒ Γ𝑏 .

•; Γ𝑏 ; Θ ⊢+ 𝜏′ { 𝜏′ ⊣ Γ𝑏 Immediate by RR-Refl.
∃Γ𝑜 .Γ𝑏 ⋓ Γ𝑜 = Γ𝑏 Γ𝑜 = Γ𝑏

Case T-AppClosure:
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From premise:

T-AppClosure
Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 : ∀<> (𝜏si1 , . . . , 𝜏si𝑛 ) Φ𝑐→ 𝜏si

𝑓
⇒ Γ0

∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 . . . 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si
𝑖′ ⇒ Γ𝑖 Δ; Γ𝑖 ; Θ ⊢⊞ 𝜏si

𝑖′ { 𝜏si𝑖 ⊣ Γ′𝑖
∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si𝑖 ) . Γ′𝑛 ⊢ 𝑟 rnrb

Σ; Δ; Γ; Θ ⊢ 𝑒𝑓 (𝑒1 , . . . , 𝑒𝑛) : 𝜏si
𝑓
⇒ Γ′𝑛

Since 𝑒 = 𝑒𝑓 (𝑒1 , . . . , 𝑒𝑛), by inspection of the reduction rules, we know that 𝑒 steps with the
following rule:

E-AppClosure
𝑣𝑓 = ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩

Σ ⊢ (𝜎 ; 𝑣𝑓 (𝑣1 , . . . , 𝑣𝑛) ) → (𝜎 ♮ 𝜍𝑐 , 𝑥1 ↦→ 𝑣1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛 ; framed 𝑒 )

We then pick Γ𝑖 to be Γ′𝑛 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 , and need to show:
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Σ ⊢ 𝜎′ : Γ𝑖 Applying Lemma E.15 to the derivation for 𝑣 𝑓 gives us Σ; • ⊢ Γ ▷ Γ0. We can apply
Lemma E.27 with Σ ⊢ 𝜎 : Γ to get Σ ⊢ 𝜎 : Γ0.
Then, for each pair of value typing judgment and region rewriting, we follow
the same pattern we will describe in terms of an arbitrary index 𝑖 . First, we apply
Lemma E.15 to the derivation for 𝑣𝑖 to get Σ; • ⊢ Γ𝑖−1▷Γ𝑖 . Then, applying Lemma E.27
gives us Σ ⊢ 𝜎 : Γ𝑖 . Then, we can apply Lemma E.14 to •; Γ𝑖 ; Θ ⊢⊞ 𝜏si

𝑖′ { 𝜏si
𝑖
⊣ Γ′𝑖 to

get Σ ⊢ 𝜎 : Γ′𝑖 . Going through this for all the values in sequence gives us Σ ⊢ 𝜎 : Γ′𝑛
Then, inversion of T-ClosureValue for the typing derivation for 𝑣 𝑓 gives us Σ; Γ ⊢
𝜍𝑐 : F𝑐 . We can then invert WF-Frame here to get dom(𝜍) = dom(F𝑐 ) |𝑥 ∀𝑥 ∈
dom(𝜍). Σ; •; Γ ♮ F𝑐 ; Θ ⊢ 𝜍 (𝑥) : F𝑐 (𝑥) ⇒ Γ ♮ F𝑐 which we can then use with
Σ ⊢ 𝜎 : Γ𝑛 in WF-StackFrame to get Σ ⊢ 𝜎 ♮ 𝜍𝑐 : Γ′𝑛 ♮ F𝑐 .
Finally, we repeatedly apply Lemma E.35 to the derivations for the arguments
(𝑣1 . . . 𝑣𝑛) to get Σ ⊢ 𝜎 ′ : Γ𝑖 .

Σ; Γ𝑖 ⊢ 𝑣′ : Θ Inverting WF-Temporaries gives us ∀𝑗 ∈ 1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si
𝑖−1 ⊢ 𝑣 ′𝑗 :

𝜏si
𝑗
⇒ Γ.

Applying Lemma E.15 to the derivation for 𝑣 𝑓 gives us Σ; • ⊢ Γ ▷ Γ0. For each
of ∀𝑗 ∈ 1 . . . 𝑛. Σ; •; Γ; • ⊢ 𝑣 ′𝑗 : 𝜏si

𝑖
⇒ Γ, we apply Lemma E.25 to get ∀𝑗 ∈

1 . . . 𝑛. Σ; •; Γ0; • ⊢ 𝑣 ′𝑗 : 𝜏si
𝑗
⇒ Γ0

From here, we have an alternating pattern of lemmas to apply to deal with the
interleaved value typing and then region rewriting in the premise of T-AppClosure.
For each value 𝑣𝑖 in T-AppClosure, we’ll first apply Lemma E.15 to get Σ; • ⊢ Γ𝑖−1▷Γ𝑖 .
Then, we’ll apply Lemma E.25 to ∀𝑗 ∈ 1 . . . 𝑛. Σ; •; Γ𝑖−1; • ⊢ 𝑣 ′𝑗 : 𝜏si

𝑗
⇒ Γ𝑖−1

to get ∀𝑗 ∈ 1 . . . 𝑛. Σ; •; Γ𝑖 ; • ⊢ 𝑣 ′𝑗 : 𝜏si
𝑗

⇒ Γ𝑖 . Then, we apply Lemma E.13
to each of these along with the rewriting •; Γ𝑖 ; Θ ⊢⊞ 𝜏si

𝑖′ { 𝜏si
𝑖

⊣ Γ′𝑖 to get
∀𝑗 ∈ 1 . . . 𝑛. Σ; •; Γ′𝑖 ; • ⊢ 𝑣 ′𝑗 : 𝜏si

𝑗
⇒ Γ′𝑖 . After going through this for each value

𝑣𝑖 , we have ∀𝑗 ∈ 1 . . . 𝑛. Σ; •; Γ′𝑛 ; • ⊢ 𝑣 ′𝑗 : 𝜏si
𝑗
⇒ Γ′𝑛 .

We also immediately have that adding a new empty frame leaves all the typing
derivations good since it doesn’t actually bind any new names on its own. Thus,
we have ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′𝑛 ♮ •; • ⊢ 𝑣𝑖 : 𝜏si

𝑖
⇒ Γ′𝑛 ♮ •.

Repeatedly applying Lemma E.34 to each of the value typing judgments and each
of ∀𝑖 ∈ { 1 . . . 𝑛 }. ∀𝑟 ∈ free-regions(𝜏si

𝑖
). Γ1 ⊢ 𝑟 rnrb (from the premise of T-App)

gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′𝑛 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; • ⊢ 𝑣𝑖 : 𝜏si
𝑖

⇒
Γ′𝑛 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 .
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Σ; •; Γ𝑖 ; Θ ⊢ 𝑒′ : 𝜏si
𝑓
⇒ Γ′𝑛 Consider first the typing derivation for 𝑣 𝑓 of Σ; •; Γ; Θ ⊢ 𝑣 𝑓 :

∀<>(𝜏si1 , . . . , 𝜏si𝑛 )
Φ𝑐→ 𝜏si

𝑓
⇒ Γ′0 .

Applying Lemma E.26 gives us Σ; •; Γ′0 ; Θ ⊢ 𝑣 𝑓 : ∀<>(𝜏si1 , . . . , 𝜏si𝑛 )
Φ𝑐→

𝜏si
𝑓
⇒ Γ′0 .

Then, as in the previous cases, we can apply Lemma E.15, Lemma E.25,
and Lemma E.13 in sequence starting with the above typing derivation
with each of the typing derivations for the arguments 𝑣𝑖 and their
subsequent corresponding region rewriting derivation. At the end, this
gives us Σ; •; Γ′𝑛 ; Θ ⊢ 𝑣 𝑓 : ∀<>(𝜏si1 , . . . , 𝜏si𝑛 )

Φ𝑐→ 𝜏si
𝑓
⇒ Γ′𝑛

Then, inversion on T-ClosureValue on this typing deriva-
tion for 𝑣 𝑓 gives us free-vars(𝑒) \ 𝑥 = 𝑥 𝑓 = dom(F𝑐 ) |𝑥 ,
𝑟 = free-regions(Γ(𝑥 𝑓 )) , free-regions(𝑒) = dom(F𝑐 ) |𝑟 , and
Σ; •; Γ′𝑛 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′𝑛 ♮ F . We can
then apply T-Framed to get Σ; •; Γ𝑛 ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢
framed 𝑒 : 𝜏si

𝑓
⇒ Γ𝑛 .

•; Γ′𝑛 ; Θ ⊢+ 𝜏si
𝑓
{ 𝜏si

𝑓
⊣ Γ′𝑛 Immediate by RR-Refl.

∃Γ𝑜 .Γ′𝑛 ⋓ Γ𝑜 = Γ′𝑛 Γ𝑜 = Γ′𝑛

Case T-Function:

From premise:

T-Function
Σ(𝑓 ) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ) → 𝜏si𝑟 where 𝜚1 : 𝜚2 { 𝑒 }

Σ; Δ; Γ; Θ ⊢ 𝑓 : ∀<𝜑 , 𝜚 , 𝛼> (𝜏si1 , . . . , 𝜏si𝑛 ) → 𝜏si𝑟 where 𝜚1 : 𝜚2 ⇒ Γ

Since 𝑒 = ∀<𝜌 , 𝛼>(𝜏si1 , . . . , 𝜏si𝑛 ) → 𝜏si𝑟 , by inspection of the reduction rules, we know that 𝑒 steps
with the following rule:

E-Function
Σ(𝑓 ) = fn 𝑓 <𝜑 , 𝜚 , 𝛼> (𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛) → 𝜏s𝑟 where 𝜚 : 𝜚 ′ { 𝑒 }

Σ ⊢ (𝜎 ; 𝑓 ) → (𝜎 ; ⟨• , forall<𝜑 , 𝜚 , 𝛼> |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩ )

We then pick Γ𝑖 to be Γ , and need to show:

Σ ⊢ 𝜎 : Γ Immediate from our premise.
Σ; Γ ⊢ 𝑣 : Θ Immediate from our premise.

Σ; •; Γ; Θ ⊢ 𝑒′ : 𝜏′ ⇒ Γ By T-ClosureValue since 𝜎𝑐 is empty, and we know that the body itself is
well-typed as a consequence of inversion on WF-FunctionDefinition for
f.

•; Γ; Θ ⊢+ 𝜏′ { 𝜏 ⊣ Γ Immediate by RR-Refl.
∃Γ𝑜 .Γ ⋓ Γ𝑜 = Γ Γ𝑜 = Γ

Case T-Closure:
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From premise:

T-Closure
free-vars(𝑒) \ 𝑥 = 𝑥𝑓 free-nc-varsΓ (𝑒) \ 𝑥 = 𝑥𝑛𝑐

𝑟 = free-regions(Γ (𝑥𝑓 )) , (free-regions(𝑒) \ (free-regions(𝜏si), free-regions(𝜏si𝑟 )))

F𝑐 = 𝑟 ↦→ Γ (𝑟 ) , 𝑥𝑓 : Γ (𝑥𝑓 ) ∀𝑟𝑝 ∈
𝑛⋃
𝑖=1

free-regions(𝜏si𝑖 ) ∪ free-regions(𝜏si𝑟 ) . Γ (𝑟𝑝 ) = ∅

Σ; Δ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐 )† ] ♮ F𝑐 , 𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 ; Θ ⊢ 𝑒 : 𝜏si𝑟 ⇒ Γ′ ♮ F

Σ; Δ; Γ; Θ ⊢ |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } : (𝜏si1 , . . . , 𝜏si𝑛 ) F𝑐→ 𝜏si𝑟 ⇒ Γ′

Since 𝑒 = forall<𝜑 , 𝜌 , 𝛼> |𝑥1 : 𝜏si1 , . . . , 𝑥𝑛 : 𝜏si𝑛 | → 𝜏si𝑟 { 𝑒 } , by inspection of the reduction rules,
we know that 𝑒 steps with the following rule:

E-Closure
𝑥𝑓 = free-vars(𝑒) 𝑥𝑛𝑐 = free-nc-vars𝜎 (𝑒) 𝜍𝑐 = 𝜎 | 𝑥𝑓

Σ ⊢ (𝜎 ; |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ) → (𝜎 [𝑥𝑛𝑐 ↦→ dead]; ⟨𝜍𝑐 , |𝑥1 : 𝜏s1 , . . . , 𝑥𝑛 : 𝜏s𝑛 | → 𝜏s𝑟 { 𝑒 } ⟩ )

We then pick Γ𝑖 to be Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐 )†] , and need to show:

Σ ⊢ 𝜎 [𝑥𝑛𝑐 ↦→ dead] : Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐 )† ] Compared to Γ, we know that Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐 )†] has more
things marked dead and no other changes. Thus, we can
apply R-Env to get Σ; • ⊢ Γ ▷ Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐 )†]. Then, we
can apply Lemma E.27 to get Σ ⊢ 𝜎 : Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐 )†].
Since dead is good at every dead type 𝜏sd by T-Dead, we
can then build a new derivation using that rule instead for
every 𝑥𝑛𝑐 that is now at a dead type. This gives us Σ ⊢
𝜎 [𝑥𝑛𝑐 ↦→ dead] : Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐 )†].

Σ; Γ [𝑥𝑛𝑐 ↦→ Γ (𝑥𝑛𝑐 )† ] ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈
1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖

⇒ Γ. By

R-Env, we have that Σ; • ⊢ Γ ▷ Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐 )†] .
Thus, we can apply Lemma E.25 to each of the typ-
ing judgments and then apply WF-Temporaries to get
Σ; Γ [𝑥𝑛𝑐 ↦→ Γ(𝑥𝑛𝑐 )†] ⊢ 𝑣 : Θ.

Σ; •; Γ𝑖 ; Θ ⊢ 𝑒′ : 𝜏′ ⇒ Γ𝑖 Immediate by inversion of T-Closure and application of T-
ClosureValue. Note that they have identical premises.

•; Γ𝑖 ; Θ ⊢+ 𝜏′ { 𝜏′ ⊣ Γ𝑖 Immediate by RR-Refl.
∃Γ𝑜 .Γ𝑖 ⋓ Γ𝑜 = Γ𝑖 Γ𝑜 = Γ𝑖

Case T-Shift:
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From premise:

T-Shift
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ , 𝑥 : 𝜏sd

Σ; Δ; Γ; Θ ⊢ shift 𝑒 : 𝜏si ⇒ Γ′

Since 𝑒 = shift 𝑒𝑖 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Shift

Σ ⊢ (𝜎 , 𝑥 ↦→ 𝑣′; shift 𝑣 ) → (𝜎 ; 𝑣 )

We then pick Γ𝑖 to be Γ′ , and need to show:

Σ ⊢ 𝜎 : Γ′ By inversion of WF-StackFrame on Σ ⊢ 𝜎 , 𝑥 ↦→ 𝑣 ′ : Γ′ , 𝑥 : 𝜏sd, we
get Σ ⊢ 𝜎 : Γ𝑖 , dom(𝜍 , 𝑥 ↦→ 𝑣 ′) = dom(F , 𝑥 : 𝜏sd) |𝑥 , and ∀𝑥 ∈
dom(𝜎 ♮ 𝜍 , 𝑥 ↦→ 𝑣 ′). Σ; •; Γ𝑖 ♮ F , 𝑥 : 𝜏sd; Θ ⊢ (𝜎 ♮ 𝜍 , 𝑥 ↦→ 𝑣 ′) (𝑥) :
(Γ𝑖 ♮ F , 𝑥 : 𝜏sd) (𝑥) ⇒ Γ𝑖 ♮ F , 𝑥 : 𝜏sd. Note that Γ𝑖 ♮ F = Γ′. We can then
immediately see that the above implies dom(𝜍) = dom(F )|𝑥 and ∀𝑥 ∈
dom(𝜎 ♮ 𝜍 , 𝑥 ↦→ 𝑣 ′). Σ; •; Γ𝑖 ♮ F ; Θ ⊢ (𝜎 ♮ 𝜍) (𝑥) : (Γ𝑖 ♮ F )(𝑥) ⇒
Γ𝑖 ♮ F . Thus, we can apply WF-StackFrame to get Σ ⊢ 𝜎 : Γ𝑖 ♮ 𝜍 which
can be rewritten as Σ ⊢ 𝜎 : Γ′.

Σ; Γ′ ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si
𝑖−1 ⊢

𝑣𝑖 : 𝜏si
𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-Shift) for 𝑒
(which we know is a value from E-Shift) gives us Σ; • ⊢ Γ ▷ Γ′.
Thus, we can apply Lemma E.25 to each of the typing judgments to get
∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′.

Finally, applying WF-Temporaries gives us Σ; Γ′ ⊢ 𝑣 : Θ.
Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′ Weknow from E-Shift that 𝑒 is a value 𝑣 . Thus, we can apply Lemma E.26

to Σ; •; Γ; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′ , 𝑥 : 𝜏sd to get Σ; •; Γ′ , 𝑥 : 𝜏sd; Θ ⊢ 𝑣 :
𝜏si ⇒ Γ′ , 𝑥 : 𝜏sd.
We now wish to show that Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′. By inspecting
the grammar of values and their typing rules, we know that the only
values who depend on the context are pointers and closure values.
But by inversion on Σ; •; Γ; Θ ⊢ shift 𝑣 : 𝜏si ⇒ Γ′, we know that
Σ; •; Γ′ ⊢ 𝜏si. Since the type is valid without the frame, we know that the
values cannot depend on that frame. Thus, we can conclude Σ; •; Γ′; Θ ⊢
𝑣 : 𝜏si ⇒ Γ′.

•; Γ′; Θ ⊢+ 𝜏si { 𝜏si ⊣ Γ′ Immediate by RR-Refl.
∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-Framed:
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From premise:

T-Framed
Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏si ⇒ Γ′ ♮ F′

Σ; Δ; Γ; Θ ⊢ framed 𝑒 : 𝜏si ⇒ Γ′

Since 𝑒 = framed 𝑒𝑖 , by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-Framed

Σ ⊢ (𝜎 ♮ 𝜍 ; framed 𝑣 ) → (𝜎 ; 𝑣 )

We then pick Γ𝑖 to be Γ′ , and need to show:

Σ ⊢ 𝜎 : Γ′ Applying Lemma E.28 to Σ ⊢ 𝜎 ♮ 𝜍 : Γ′ ♮ F gives us Σ ⊢ 𝜎 : Γ′.
Σ; Γ′ ⊢ 𝑣 : Θ Inverting WF-Temporaries gives us ∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢
𝑣𝑖 : 𝜏si

𝑖
⇒ Γ.

Applying Lemma E.15 to the typing derivation (from T-Framed) for 𝑒
(which we know is a value from E-Framed) gives us Σ; • ⊢ Γ ▷ Γ′.
Thus, we can apply Lemma E.25 to each of the typing judgments to get
∀𝑖 ∈ 1 . . . 𝑛. Σ; •; Γ′; 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑣𝑖 : 𝜏si
𝑖
⇒ Γ′.

Finally, applying WF-Temporaries gives us Σ; Γ′ ⊢ 𝑣 : Θ.
Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′ We know from E-Framed that 𝑒 is a value 𝑣 . Thus, we can ap-

ply Lemma E.26 to Σ; •; Γ ♮ F ; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′ ♮ F ′ to get
Σ; •; Γ′ ♮ F ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′ ♮ F ′.
We now wish to show that Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′. By inspecting
the grammar of values and their typing rules, we know that the only
values who depend on the context are pointers and closure values.
But by inversion on Σ; •; Γ; Θ ⊢ framed 𝑣 : 𝜏si ⇒ Γ′, we know
that Σ; •; Γ′ ⊢ 𝜏si. Since the type is valid without the frame, we know
that the values cannot depend on that frame. Thus, we can conclude
Σ; •; Γ′; Θ ⊢ 𝑣 : 𝜏si ⇒ Γ′.

•; Γ′; Θ ⊢+ 𝜏si { 𝜏si ⊣ Γ′ Immediate by RR-Refl.
∃Γ𝑜 .Γ′ ⋓ Γ𝑜 = Γ′ Γ𝑜 = Γ′

Case T-BorrowIndex:

From premise:

T-BorrowIndex
Σ; Δ; Γ; Θ ⊢ 𝑒 : u32 ⇒ Γ′ Γ′ (𝑟 ) = ∅ Γ′; Θ ⊢ 𝑟 rnic

Δ; Γ′; Θ ⊢𝜔 𝑝 ⇒ { ℓ } Δ; Γ′ ⊢𝜔 𝑝 : 𝜏xi

𝜏xi = [𝜏si; 𝑛] ∨ 𝜏xi = [𝜏si ]

Σ; Δ; Γ; Θ ⊢ &𝑟 𝜔 𝑝 [𝑒 ] : &𝑟 𝜔 𝜏si ⇒ Γ′ [𝑟 ↦→ { ℓ }]

Since 𝑒 = &𝑟 𝜔 𝑝 [𝑒], by inspection of the reduction rules, we know that 𝑒 steps with the following
rule:

E-EvalCtx
Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎′; 𝑒′ )

Σ ⊢ (𝜎 ; &𝑟 𝜔 𝑝 [𝑒 ] ) → (𝜎′; &𝑟 𝜔 𝑝 [𝑒′] )
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We begin by applying the induction hypothesis on 𝑒 . We get that ∃Γ𝑖 such that Σ ⊢ 𝜎 ′ : Γ𝑖 and
Σ; Γ𝑖 ⊢ 𝑣 : Θ and Σ; •; Γ𝑖 ; Θ ⊢ 𝑒 ′ : u32 ⇒ Γ′

𝑓
and •; Γ′

𝑓
; Θ ⊢+ u32 { u32 ⊣ Γ𝑠 and there exists Γ𝑜

such that Γ′ = Γ𝑠 ⋓ Γ𝑜 . Note that since rewriting does nothing with u32, Γ′
𝑓
= Γ𝑠 . We chose Γ𝑖 in

the lemma statement to be Γ𝑖 and need to show:

Σ ⊢ 𝜎′ : Γ𝑖 Immediate.
Σ; Γ𝑖 ⊢ 𝑣 : Θ Immediate

Σ; •; Γ𝑖 ; Θ ⊢ &𝑟 𝜔 𝑝 [𝑒′] : &𝑟 𝜔 𝜏si ⇒ Γ′
𝑓
[𝑟 ↦→ { ℓ′ }] We’d like to apply T-BorrowIndex. In order to

do so, we still need to show Γ′
𝑓
(𝑟 ) = ∅, Γ′

𝑓
; Θ ⊢

𝑟 rnic, Σ; Γ′
𝑓
; • ⊢𝜔 𝑝 ⇒ { ℓ ′ }, and •; Γ′ ⊢𝜔 𝑝 :

𝜏xi.
Γ′
𝑓
(𝑟 ) = ∅ is immediate because Γ′

𝑓
(𝑟 ) ⊆ Γ′(𝑟 ).

Both Γ′
𝑓
; Θ ⊢ 𝑟 rnic and •; Γ′ ⊢𝜔 𝑝 : 𝜏xi follow

from the fact that types are unchanged between
Γ′ and Γ′

𝑓
.

The last obligation is Σ; Γ′
𝑓
; • ⊢𝜔 𝑝 ⇒ { ℓ ′ },

which follows from Lemma E.53
•; Γ′

𝑓
[𝑟 ↦→ { ℓ′ }]; Θ ⊢+ u32 { u32 ⊣ Γ𝑠 Immediate, with Γ𝑠 = Γ′

𝑓
[𝑟 ↦→ { ℓ ′ }].

∃Γ𝑜 .Γ𝑠 ⋓ Γ𝑜 = Γ′ [𝑟 ↦→ { ℓ }] From our application of the induction hypothesis
above, we have that Γ′ = Γ′

𝑓
⋓ Γ𝑜 . As we found

in the typing judgement section above, { ℓ ′ } ⊆
{ ℓ }. Therefore, for this judgement, we can use
Γ𝑜 [𝑟 ↦→ { ℓ } \ { ℓ ′ }].

Case T-Tuple:

From premise:

T-Tuple
∀𝑖 ∈ { 1 . . . 𝑛 }. Σ; Δ; Γ𝑖−1; Θ , 𝜏si1 , . . . , 𝜏si𝑖−1 ⊢ 𝑒𝑖 : 𝜏si𝑖 ⇒ Γ𝑖

Σ; Δ; Γ0; Θ ⊢ (𝑒1 , . . . , 𝑒𝑛) : (𝜏si1 , . . . , 𝜏si𝑛 ) ⇒ Γ𝑛

Since 𝑒 = (𝑣1 , . . . , 𝑣𝑖−1, 𝑒𝑖 , . . . , 𝑒𝑛), by inspection of the reduction rules, we know that 𝑒 steps
with the following rule:

E-EvalCtx
Σ ⊢ (𝜎 ; 𝑒𝑖 ) → (𝜎′; 𝑒′𝑖 )

Σ ⊢ (𝜎 ; (𝑣1 , . . . , 𝑣𝑖−1, 𝑒𝑖 , . . . , 𝑒𝑛) ) → (𝜎′; (𝑣1 , . . . , 𝑣𝑖−1, 𝑒′𝑖 , 𝑒𝑖+1 , . . . , 𝑒𝑛) )

We want to apply our induction hypothesis to the premise of E-EvalCtx with the typing judge-
ment Σ; •; Γ𝑖−1; Θ, 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑒𝑖 : 𝜏si
𝑖

⇒ Γ𝑖 . In order to do so we need to show that ∀ 𝑣 .
Σ; Γ𝑖−1 ⊢ 𝑣, 𝑣1 , . . . , 𝑣𝑖−1 : Θ, 𝜏si1 , . . . , 𝜏si

𝑖−1 given that Σ; Γ0 ⊢ 𝑣 : Θ. So let 𝑣 ∈ 𝑣 . For each 𝑣 𝑗 , where
0 < 𝑗 < 𝑖 , we can repeatedly apply Lemma E.15 to get Σ; • ⊢ Γ𝑗−1▷ Γ𝑖−1, and then apply Lemma E.25
to get that ∀𝑣𝑘 ∈ 𝑣 . Σ; •; Γ𝑖−1; Θ, 𝜏si1 , . . . , 𝜏si

𝑘−1 ⊢ 𝑣𝑘 : Θ[𝑘] ⇒ Γ𝑖−1.
Now we can apply the induction hypothesis to get there is some Γ′𝑖−1 such that ∀ 𝑣 . Σ; Γ′𝑖−1 ⊢

𝑣 : Θ, 𝜏si1 , . . . , 𝜏si
𝑖−1 and Σ; •; Γ′𝑖−1; Θ, 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑒 ′𝑖 : 𝜏si′
𝑖

⇒ Γ′𝑖 , with Σ ⊢ 𝜎 ′ : Γ′𝑖−1 and
•; Γ′𝑖 ; Θ, 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢+ 𝜏si′𝑖
{ 𝜏si

𝑖
⊣ Γ𝑠𝑖 and there is some Γ𝑜𝑖 such that Γ𝑖 = Γ𝑠𝑖 ⋓ Γ𝑜𝑖 .
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We then pick Γ𝑖 in the lemma statement to be Γ′𝑖−1 and need to show:

Σ ⊢ 𝜎′ : Γ′
𝑖−1 Immediate.

Σ; Γ′
𝑖−1 ⊢ 𝑣 : Θ Immediate

Σ; •; Θ; Γ′
𝑖−1 ⊢ (𝑣1 , . . . , 𝑣𝑖−1, 𝑒′𝑖 , 𝑒𝑖+1 , . . . , 𝑒𝑛)

: (𝜏si1 , . . . , 𝜏si
𝑖−1, 𝜏

si′
𝑖
, 𝜏si

𝑖+1 , . . . , 𝜏
si
𝑛 ) ⇒ Γ′𝑛

We want to apply T-Tuple in or-
der to typecheck this tuple expres-
sion. We firstly want to show that
we can typecheck 𝑣1 through 𝑣𝑖−1
with initial input context Γ′𝑖−1. For
each 𝑣 𝑗 , where 0 < 𝑗 < 𝑖 , we
can repeatedly apply Lemma E.15
to get Σ; • ⊢ Γ𝑗−1 ▷ Γ𝑖−1, and
then apply Lemma E.25 to get that
Σ; •; Γ𝑖−1; Θ, 𝜏si1 , . . . , 𝜏si

𝑗−1 ⊢ 𝑣 𝑗 :
𝜏 𝑗 ⇒ Γ𝑖−1, and finally applying
our continuation typing hypothesis
gives us Σ; •; Γ′𝑖−1; Θ, 𝜏si1 , . . . , 𝜏si

𝑗−1 ⊢
𝑣 𝑗 : 𝜏 𝑗 ⇒ Γ′𝑖−1.
Then we can use the result
of our induction hypothesis,
Σ; •; Γ′𝑖−1; Θ, 𝜏si1 , . . . , 𝜏si

𝑖−1 ⊢ 𝑒 ′𝑖 :
𝜏si′
𝑖

⇒ Γ′𝑖 .
And finally for 𝑒𝑖+1 , . . . , 𝑒𝑛 , we can
repeatedly apply Lemma E.54.

•; Γ′𝑛 ; Θ ⊢+ (𝜏si1 , . . . , 𝜏si
𝑖−1, 𝜏

si′
𝑖
, 𝜏si

𝑖+1 , . . . , 𝜏
si
𝑛 ) { (𝜏si1 , . . . , 𝜏si𝑛 ) ⊣ Γ𝑠 Apply RR-Tuple to RR-Refl for ev-

ery pair of types that are identical,
leaving just 𝜏si′

𝑖
and 𝜏si

𝑖
for which we

can use •; Γ′𝑖 ; Θ, 𝜏si1 , . . . , 𝜏si
𝑖−1 ⊢+

𝜏si′
𝑖
{ 𝜏si

𝑖
⊣ Γ𝑠𝑖 from our induction

hypothesis with Lemma E.65 and
Lemma E.67 to get that •; Γ′𝑛 ; Θ ⊢+
𝜏si′
𝑖
{ 𝜏si

𝑖
⊣ Γ𝑠 .

∃Γ𝑜 .Γ𝑠 ⋓ Γ𝑜 = Γ𝑛 Note from the induction hypothe-
sis above, we have Γ𝑖 = Γ𝑠𝑖 ⋓ Γ𝑜𝑖 .
This means that for whatever loan
sets were unioned between Γ′𝑖 and
Γ𝑠𝑖 , those loan sets will be unioned
between Γ′𝑛 and Γ𝑠 . And since Γ𝑖 con-
tained Γ𝑠𝑖 , it will also be true that Γ𝑛
will contain Γ𝑠 , which means we can
use Γ𝑜 = Γ𝑛 \ Γ𝑠 .

Case T-Drop:
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From premise:

T-Drop
Γ (𝜋 ) = 𝜏si𝜋 Σ; Δ; Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Σ; Δ; Γ; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓

Since T-Drop applies to any expression 𝑒 , we cannot determine anything about what rule we
stepped with. So, we will instead try to apply our induction hypothesis to the typing derivation in
the premise of T-Drop (Σ; •; Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓 ) . To do this, we need to establish

the premises of our inductive hypothesis.
Namely, we need to show:
(1) Σ; •; Γ [𝜋 ↦→ 𝜏si

†
𝜋 ]; Θ ⊢ 𝑒 : 𝜏sx ⇒ Γ𝑓 ,

(2) Σ ⊢ 𝜎 : Γ [𝜋 ↦→ 𝜏si
†

𝜋 ],
(3) Σ ⊢ (𝜎 ; 𝑒 ) → (𝜎 ′; 𝑒 ′ ).

(1) follows immediately from our premise.
(2) follows almost directly from our premise, which tells us that Σ ⊢ 𝜎 : Γ. We just need to show

that the value at 𝑥 (where 𝑥 is the root of 𝜋 ) is still valid at its new type. Fortunately, it’s
old derivation works almost perfectly except for typing the part that corresponds directly
to 𝜋 . In this case, we can use T-Dead on the value to get the new derivation with that part
of the aggregate structure at the uninitialized type 𝜏si†𝜋 .

(3) follows immediately from our premise.

This allows us to use our induction hypothesis to conclude that there exists Γ′𝑖 such that:
(5) Σ ⊢ 𝜎 ′ : Γ′𝑖 ,
(6) Σ; Γ′𝑖 ⊢ 𝑣 : Θ,
(7) Σ; •; Γ′𝑖 ; Θ ⊢ 𝑒 ′ : 𝜏 ′ ⇒ Γ′

𝑓
,

(8) •; Γ′
𝑓
; Θ ⊢+ 𝜏 ′ { 𝜏sx ⊣ Γ𝑠 , and

(9) ∃Γ𝑜 . Γ𝑠 ⋓ Γ𝑜 = Γ𝑓 .
□

E.16 Type Safety
Theorem E.70 (Type Safety). If Σ; •; •; • ⊢ 𝑒 : 𝜏 si ⇒ Γ and ⊢ Σ, then Σ ⊢ (•; 𝑒 ) →∗ (𝜎 ′; 𝑣 )

or evaluation of 𝑒 aborts or diverges.

Proof. By the interleaved use of Progress and Preservation. □
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